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We develop a model of directed technological change, frictional unemployment and migra-

tion to examine the effects of a change in skill endowments on wages, employment rates and

emigration rates of skilled and unskilled workers. We find that, depending on the elasticity of

substitution between skilled and unskilled workers and the elasticity of the matching function,

an increase in the skill ratio can reduce the relative unemployment rate of skilled workers and

decrease the relative emigration rate of skilled workers (brain drain). We provide empirical es-

timates and simulations to support our findings and show that effects are empirically relevant

and potentially sizeable.
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Cuñat, Monika Merz, the participants of seminars at Vienna Graduate School of Economics, Vienna Institute for
International Economic Studies, and the 2011 meeting of the European Economic Association for helpful comments.

1



1 Introduction

Models of skill-biased technological change have become increasingly popular for explaining the

increase in the relative wage of skilled workers (skill premium) that has been observed around the

world over the last decades (see e.g., Acemoglu (2003), Thoenig and Verdier (2003), Epifani and

Gancia (2008)). More recently, they have also been used to to explain cross-country differences

in income per worker (e.g., Acemoglu and Zilibotti (2001), Caselli and Coleman (2006), Gancia,

Mueller and Zilibotti (2011)). A major challenge when testing these models in a cross-country

context is that their main empirical prediction is on the relationship between the skill premium

and the relative abundance of skilled workers. However, comparable cross-country data on skill

premia, which are required to test this hypothesis, are scarce and of questionable quality, making

it hard to test. In this paper, we develop two useful extensions of Acemoglu’s (1998, 2002) model of

directed technological change. We augment the standard model for two components: skill-specific

frictional unemployment and skill-specific migration. With these extensions, the model has clear

predictions on the relationship between skill ratios and relative unemployment rates of skilled

workers on the one hand, and on the relationship between skill ratios and the relative emigration

rate of skilled workers (brain drain), on the other hand, for which comparable cross-country data

are readily available.

To illustrate the idea, Figure 1 plots relative unemployment rates of skilled relative to unskilled

workers for a panel of both OECD and non-OECD countries against relative skill endowments.1 It

is apparent that countries with a higher skill ratio have a substantially lower unemployment rate

of skilled relative to unskilled workers. Figure 2 plots log changes in relative unemployment rates

against log changes in skill ratio. Again, there is a strong negative correlation. Such a negative

relation is not consistent with models where the relative demand for skill is downward sloping,

since in this case higher relative abundance of skill should imply higher relative unemployment

rates of skilled workers.2 Moreover, the observed links between the skill ratio and skill-specific

labor market outcomes affect the relationship between the skill ratio and emigration rates of the

skilled and unskilled accordingly: more skill-abundant countries have a significantly lower migration

rate of skilled relative to unskilled workers (brain drain). Figure 3 provides a scatter plot of brain

drain against countries’ skill ratios.3 Clearly, more skill-abundant countries suffer much less from

brain drain than skill-scarce ones. In Figure 4 we plot log changes in brain drain against log changes

1Skilled workers are defined as workers with at least some tertiary education in the population over 25 years.
Unemployment rates by skill are constructed from the ILO Key Indicators of the Labor Market (see the Appendix
for a description), data on educational attainment are from Barro and Lee (2000). Data are in 5-year intervals from
1980-2005, pooled over time.

2This is true even though relative wages of the skilled decrease, as shown in our model.

3Data on migration by skill to the OECD are from Beine, Docquier and Rapoport (2008). Data are for 1990 and
2000.
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in skill ratio. Again, we observe that countries that increase their skill ratio tend to experience a

fall in the brain drain.

Motivated by these correlations, we build a model of directed technological change, skill-specific

unemployment and migration. Towards this end, we combine a version of the canonical model of

directed technological change (Acemoglu (1998, 2002), Gancia and Zilibotti (2008)) with matching

frictions in the labor market (Mortensen (1970), Pissarides (1990/2000)). We show that two con-

ditions are necessary for the skill premium and relative employment rates of skilled workers to be

increasing in the skill ratio. First, the elasticity of substitution between skilled and unskilled labor

needs to be sufficiently large. This guarantees that the relative demand for skill rises with the skill

ratio, as technological innovations complementing the relatively more abundant employed factor

become more profitable (market size effect). Second, labor markets need to be sufficiently frictional,

such that an increase in the skill ratio does not increase relative labor supply by too much. Oth-

erwise, skill premia need to fall to absorb the additional factor supply, leading to relatively lower

employment rates of skilled and inducing technological change – via the market size effect – that

is biased towards the factor that has become relatively more scarce. Moreover, we also show that

the higher matching elasticities are, the more skill-biased technological change manifests itself not

so much in the form of increasing skill premia but, rather, in increasing employment opportunities

for the skilled.

In an extension, we introduce labor market institutions into the model, considering unemployment

benefits and firing costs. We show that in the presence of these regulations, the previous conditions

for an increase in the skill ratio to increase the relative employment rate of skilled workers are no

longer sufficient. In addition, unemployment benefits and firing costs need to be sufficiently low,

otherwise an increase in the skill ratio can actually reduce relative employment rates of skilled

workers.

Turning to the predictions on migration, we show that the same conditions that guarantee that

an increase in the skill ratio increases the relative employment rate of skilled workers, are also

sufficient for the brain drain to drop when the skill ratio rises. In this case, an increase in the

skill ratio, by increasing relative employment rates and wages, increases relative expected wages of

skilled workers, thereby reducing relative incentives to emigrate.

Next, we provide empirical evidence for the model’s implications and show that skill upgrading:

first, does not lead to a reduction in the skill premium but induces skill-biased technological change;

second, it reduces the relative unemployment rate of skilled workers; third, we show that this result

is conditional on labor market regulation being sufficiently flexible (i.e., unemployment benefits and

firing cost must be sufficiently low); and fourth, we demonstrate that skill upgrading lessens the

brain drain.
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Finally, we use a calibrated version of our model to show that it does reasonably well in replicat-

ing both qualitatively and quantitatively the cross-sectional correlations referred to above (e.g.,

the positive relation between skill ratio and relative productivity of skilled, the negative relation

between skill ratio and relative unemployment of skilled, the negative relation between skill ratio

and brain drain), as well as the negative correlation between skill upgrading and the drop in brain

drain that occurred during the 1990’s. In addition, we show that at the levels of skill ratios that

are currently prevailing in many developing countries, increases in the skill ratio can potentially

result in sizeable decreases in the brain drain.

We contribute to the literature in several ways. We are the first to introduce search and matching

frictions (Mortensen (1970), Pissarides (1990, 2000)) into a model of directed technological change

(Acemoglu (1998), (2002), Gancia and Zilibotti (2008)) in order to examine the effects of the skill

ratio on skill-specific labor market outcomes. As a result, we are able to study the interactions

of labor market frictions and directed technological change and provide several interesting results

that are new to the literature. Moreover, our predictions can be used to provide new evidence for

models of directed technological change. So far, there is only a small number of studies that test

this kind of model in a cross-country context. Caselli and Coleman (2006) back out productivities

of skilled and unskilled workers from a cross-section of wage premia and income data by calibrating

a reduced form model of directed technological change. They find that relative productivities of

skill are positively correlated with income per worker. Acemoglu and Zilibotti (2001) show that

skill-technology mismatch can partially explain cross-country income differences when all countries

use the technologies developed by the U.S. More recently, Gancia, Mueller and Zilibotti (2011)

use a full-fledged quantitative model of directed technological change featuring skill-technology

mismatch, technology adoption costs and international trade that can endogenously generate skill-

specific productivity differences. They estimate technology adoption costs by fitting predicted in-

come per worker to the data and find that the model can replicate observed income differences

extremely well. However, none of these papers try to match data other than income and wages.

By focusing on unemployment rates and migration, we provide new evidence supporting models of

directed technological change.

We also contribute to the literature on brain drain, which shows that increases in the skill ratio

can coincide with decreases in the brain drain. On the one hand, this is because workers may invest

more in education when their emigration probability increases. If the net effect on the domestic

skill ratio is positive – i.e., if relatively few of the workers that obtain higher education because of

the migration perspective emigrate – then higher skilled emigration prospects can reduce the brain

drain.4 According to this strand of the literature, an increase in the migration probability can cause

4Then, the brain drain corresponds in fact to a so-called brain gain. See for example Mountford (1997), Stark,
Helmenstein and Prszkawetz (1997, 1998), Beine, Docquier and Rapoport (2001, 2008).

4



an increase in human capital in the source country. On the other hand, as has been observed more

recently, an increase in human capital in the source country can lead to an increase in domestic

wages if returns to skilled labor are increasing and, thereby, reduce emigration incentives. This

is the case in De la Croix and Docquier (2010) and Grossmann and Stadelmann (2011), where

productivity is assumed to be increasing in skilled labor endowments. In our model, causality

also runs from skill ratio to migration, but in contrast to the existing literature, we do not look

exclusively at wages as determinants of the brain drain but also at unemployment rates: In our

opinion, wages are definitely an important determinant of the decision of workers to emigrate,

but their employment probability is likely to be at least as important.5 Finally, we contribute

to the literature by providing empirical evidence for the link from skill upgrading to skill-biased

technological change, unemployment and migration.

In terms of policy implications, our findings suggest that educational policies that serve to improve

the skills of the workforce may be even more important than commonly acknowledged. First,

public investment in education should – via endogenous technology adjustment – improve the

employment prospects of skilled workers, while reducing those of unskilled ones. Second, countries

that face a deterioration in their skilled workforce through emigration might be able to turn around

emigration trends by increasing their skill share and thereby improving demand for skilled labor

and thus labor market conditions for the skilled at home. If unmet by an adequate policy response,

however, emigration of the skilled workforce might develop a self-enforcing momentum, as labor

market conditions for the skilled deteriorate further and emigration incentives are reinforced.

The paper is organized as follows. In section 2, we set up a model of skill-biased technological

change and unemployment. We first derive the equilibrium without migration, both for the case

where technology is exogenous and where it is endogenous. Next, we investigate the effect of labor

market institutions. We then extend the model to allow for migration. In section 3, we calibrate

the model and perform several comparative statics exercises, and we provide empirical evidence

for the model’s predictions in section 4. Section 5 presents our conclusions.

2 The Model

2.1 Production

We use a model with two different types of labor, skilled and unskilled workers, and factor-biased

(directed) technical progress based on Acemoglu (1998, 2002) and Gancia and Zilibotti (2008).6

5In fact, we find that wage differences are no longer significant once we control for unemployment rates.

6While our model is static for reasons of tractability, the comparative statics of skill endowment effects on
technology are the same as the steady-state ones in a dynamic model such as Acemoglu (1998, 2002).
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Final output can be used for consumption, to pay for the fixed cost of innovation and for the hiring

costs of workers in the intermediate sector. The final output sector is perfectly competitive, and

final output is produced according to the aggregate production function

Y =
[
Y
ε−1
ε

L + Y
ε−1
ε

H

] ε
ε−1

, (1)

where YL and YH are sectoral aggregate goods produced with unskilled labor L and skilled labor

H, respectively, and ε > 1 is the elasticity of substitution between them. From the final producers’

profit maximization problem, we obtain the aggregate demand and the relative demand for sectoral

aggregates:

PH =

[
Y

YH

] 1
ε

(2)

PL =

[
Y

YL

] 1
ε

(3)[
PH
PL

]
=

[
YL
YH

] 1
ε

, (4)

where we have already assumed that final output is the numéraire, which implies

P = P 1−ε
H + P 1−ε

L = 1. (5)

Sectoral final output is produced under perfect competition using a constant elasticity of substitu-

tion aggregator over a measure AL (AH) of sector-specific differentiated intermediate inputs, yL(i)

(yH(i)) with elasticity of substitution σ > 1:

YL = EL

[∫ AL

0

yL(i)
σ−1
σ di

] σ
σ−1

and YH = EH

[∫ AH

0

yH(i)
σ−1
σ di

] σ
σ−1

(6)

The range of available intermediates captures the state of technology and will be endogenously

determined in equilibrium. The terms EL ≡ A
σ−2
σ−1

L and EH ≡ A
σ−2
σ−1

H are externalities that conve-

niently pin down a degree of increasing returns that makes sectoral production functions linear

in AL(AH) and simplify the algebra. Note that this normalization does not change any of the

qualitative implications of the model (compare Gancia and Zilibotti (2008)).

From the sectoral final producers’ profit maximization problem, we obtain the inverse demand

functions for intermediate goods

pL(i) = yL(i)−
1
σ Y

1
σ

L PLEL, pH(i) = yH(i)−
1
σ Y

1
σ

H PHEH . (7)
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Producers in the intermediate sectors are monopolistically competitive and use skilled (unskilled)

labor in production. Their production technology is given by yL(i) = l(i) and yH(i) = Zh(i).

Using the demand functions for intermediates (7) it follows that revenue of intermediate producers

in the two sectors is given by

pL(i)yL(i) = Y
1
σ

L l(i)
σ−1
σ PLEL, pH(i)yH(i) = Y

1
σ

H (Zh(i))
σ−1
σ PHEH . (8)

Firms in the intermediate sectors face labor market frictions which we model following Helpman

and Itskhoki (2010). A firm in the L (H) sector that wants to hire l (h) workers must pay a hiring

cost of bLl (bHh), where bj , j ∈ {H,L}, is exogenous to the firm but depends on labor market

frictions to be discussed below. As a consequence, workers cannot be replaced without a cost and

this makes workers inside the firm different from workers outside the firm. In particular, workers

have bargaining power once they have been hired. We assume strategic wage bargaining with equal

weights between the h (l) workers and the firm à la Stole and Zwiebel (1996 a,b). This leads to a

distribution of revenue according to Shapley values. The revenue function (8) implies that the firm

gets a fraction σ/(2σ − 1) of the revenue and workers get a fraction (σ − 1)/(2σ − 1). Then, the

firm chooses an employment level that maximizes profits, which are given by

πL(i) =
σ

2σ − 1
Y

1
σ

L l(i)
σ−1
σ PLEL − bLl(i)− µ, πH(i) =

σ

2σ − 1
Y

1
σ

H (Zh(i))
σ−1
σ PHEH − bHh(i)− µ.

(9)

Here, µ is the fixed cost of producing a variety of intermediates in terms of the final good (the

innovation cost).

The solution to this profit maximization problem implies that the optimal employment of firms

equals

l(i) = l =

[
σ − 1

2σ − 1

1

bL
PLEL

]σ
YL, h(i) = h =

[
σ − 1

2σ − 1
Z
σ−1
σ

1

bH
PHEH

]σ
YH , (10)

which is decreasing in hiring costs.

Using this together with demand (7) and production technologies yL = l, yH = Zh, we find that

optimal prices are given by constant markups over the hiring costs:

pL(i) = pL =

(
2σ − 1

σ − 1

)
bL, pH(i) = pH =

(
2σ − 1

σ − 1

)
bH
Z
. (11)

Since wages equal a fraction (σ−1)/(2σ−1) of revenue (8) divided by employment (10), we obtain:

wj = bj , j ∈ {L,H} (12)
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Note also that given the pricing condition (11) and employment (10) optimal profits can be written

as

πL =
1

2σ − 1
pLyL − µ πH =

1

2σ − 1
pHyH − µ (13)

2.2 Labor Market

Each country is populated by two types of individuals that are in fixed supply. There are H skilled

workers and L unskilled workers who maximize expected utility from consumption, Uj = E(Cj),

where j ∈ {H,L}, given their expected income. Let HE (LE) be the aggregate employment of

skilled (unskilled) workers. A skilled (unskilled) individual that searches for work finds a job with

probability xH = HE/H (xL = LE/L), where xj measures the degree of labor market tightness in

sector j. Thus, her expected income equals xHwH if she is skilled (xLwL if she is unskilled).

As in the standard model of job search and unemployment (e.g. Diamond (1981), Mortensen (1970),

Pissarides (1990/2000)), we assume that firms have to post vacancies in order to attract workers.

This implies that the cost of hiring, bj , depends on labor market tightness. Following Blanchard

and Gali (2008) and Helpman and Itskhoki (2010), we assume that

bj = ajx
α
j , j ∈ (L,H) aj > 1 and α > 0, (14)

where bj is the cost of hiring per worker, xj is the employment rate measuring the degree of sectoral

labor market tightness, aj is a measure of frictions in the labor market7 and α is the elasticity of

the wage with respect to the employment rate x. Using (12) together with (14), we obtain a first

expression for the wage premium as a function of the relative employment rate of skilled:

wH
wL

=
aH
aL

(
xH
xL

)α
(15)

Following the labor market literature, we label this relation between the wage premium and relative

labor market tightness the relative wage curve (see e.g., Pissarides (1990,2000)) (we may also refer

to this relation as the relative matching curve). It represents the equivalent to the labor supply

curve in the presence of matching frictions and is increasing in the relative employment rate of

skilled workers – a relatively tighter labor market implies relatively higher wages. Note that a lower

value of α, which is equivalent to less frictional labor markets, makes this relation flatter.

7Higher values of aj correspond to greater frictions in the labor market.
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2.3 Exogenous Technology

We now solve for the equilibrium of the economy, assuming for the moment that the level of

technology, AH , AL, is exogenously given.

From the labor market clearing conditions

LE =

∫ AL

0

l(i)di

HE =

∫ AH

0

h(i)di

we get l(i) = LE
AL

and h(i) = HE
AH

. Substituting these in the sectoral production functions (6), we

can express sectoral output as

YL = ALLE and YH = AHZHE (16)

and the sectoral relative price according to (4) as

PH
PL

=

[
ALLE
AHZHE

] 1
ε

. (17)

Now, we can derive a second expression for the skill premium – for given levels of technology

AH , AL – by using (11), (12) and (16), observing that the revenue of the intermediate sectors

equals expenditure on sectoral intermediates, pLLE = PLYL and pHZHE = PHYH , and then

substituting for prices using (17) :

wH
wL
≡ ω =

PHZAH
PLAL

=

[
ZAH
AL

] ε−1
ε
[
xH
xL

]− 1
ε
[
H

L

]− 1
ε

(18)

We call this relation the relative labor demand curve. According to equation (18) the skill premium

is increasing in the relative productivity of the skilled and decreasing in the relative employment

rate of skilled workers (since ε > 1). Moreover, an increase in the relative supply of skill results in

a lower skill premium for given employment rates.

In equilibrium, relative employment unambiguously increases in relative labor supply, but relative

wages and employment rates decrease. To see this, use (15) together with (18) – where AH and

AL are taken as given – to derive

HE

LE
=

[
aL
aH

(
H

L

)α(
ZAH
AL

) ε−1
ε

] ε
αε+1

(19)
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xH
xL

=

[(
aH
aL

)−ε(
H

L

)−1(
ZAH
AL

)ε−1
] 1
αε+1

(20)

wH
wL

=

[
aH
aL

(
H

L

)−α(
ZAH
AL

)α(ε−1)
] 1
αε+1

(21)

Therefore, we get:

Remark 1. Assume technologies AH , AL are given. Then, an increase in the relative number of

skilled individuals always results in a decrease in their wage and employment rate relative to the

unskilled.

Figure 5 provides an illustration of the labor market equilibrium with exogenous technology. As

the relative supply of skilled, H/L, increases, the relative labor demand curve (18) shifts down –

for constant employment rates the relative wage must fall, which in turn leads to lower relative

labor market tightness. In the new equilibrium, relatively more skilled are employed than before,

but both their (relative) wage and employment rate are now lower.

2.4 Endogenous Technology

We now allow for free entry in the intermediate sectors to pin down the state of technology AH , AL

endogenously.

Using optimal profits (13), free entry implies that intermediate producers make zero profits.

πL =
1

2σ − 1
pLl − µ = 0 πH =

1

2σ − 1
pHh− µ = 0 (22)

Further, using the fact that pLLE = PLYL, pHZHE = PHYH , labor market clearing LE = ALl,

HE = AHh, sectoral output (16) and relative prices (17), we can write the ratio of the free entry

conditions as

πH + µ

πL + µ
=
PHZHE

PLLE
=

(
AH
AL

)− 1
ε
(
ZHE

LE

) ε−1
ε

= 1 (23)

Equation (23) shows that relative profitability has two components, which go in opposite directions:

a ’price effect’, whereby profits are higher in those sectors that produce more expensive goods, and

a ’market size effect’, whereby profits are higher in larger sectors (i.e. in sectors that employ more

workers).
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Solving for relative technologies, we obtain:

AH
AL

=

(
ZHE

LE

)ε−1

(24)

Thus, technology is biased towards the employed factor that is relatively more abundant, if the

elasticity of substitution between factors is greater than unity (i.e., factors are gross substitutes). In

this case, a fall in the relative price of the skilled aggregate good increases the relative expenditure

on the skilled aggregate good, making entry in that sector more profitable (i.e., the market size

effect dominates the price effect). Substituting (24) into the expression for the skill premium (18),

we get an expression for the skill premium as a function of relative employment when technology

is endogenously determined:

wH
wL

= Zε−1

(
xH
xL

)ε−2(
H

L

)ε−2

(25)

Hence, the skill premium with endogenous technology is increasing in the relative employment rate

of skilled workers as long as ε > 2. This means that sectoral aggregates have to be sufficiently sub-

stitutable for the skill premium to increase in relative employment rates: then, the indirect positive

effect of the skill ratio via an increase in the relative productivity of skilled workers (’technology

effect’) dominates the direct negative supply effect – compare equation (18). Moreover, an increase

in the relative supply of skilled workers shifts up the relative demand for skill and increases the

skill premium for given employment rates as long as ε > 2.

In equilibrium, we obtain the following expressions for relative employment and employment rates

(combining wages (12) and hiring costs (14)) and the skill premium (using (15) with (25)) as

functions of relative endowments:

HE

LE
= Z− ε−1

ε−2−α

[(
aH
aL

)(
H

L

)−α
] 1
ε−2−α

(26)

xH
xL

= Z− ε−1
ε−2−α

[(
aH
aL

)(
H

L

)−(ε−2)
] 1
ε−2−α

(27)

wH
wL

= Z−α(ε−1)
ε−2−α

[
aH
aL

(
H

L

)−α
] ε−2
ε−2−α

(28)

Relative employment and relative employment rates are increasing in relative endowments of work-

ers, if 0 < ε < 2 + α. The same is true for relative wages. The reason is as follows. First, relative

wages are increasing in relative employment rate, if the relative labor demand function (25) is
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increasing (if ε > 2). This is because, while sectoral prices decrease with sector size (price effect),

which implies lower revenues and lower wages, technology improves in sector size (market size ef-

fect) and, therefore, revenue and wages increase (given ε > 1). When ε > 2 the technology effect is

sufficiently strong to make the overall labor demand curve upward-sloping. Second, relative wages

are also increasing in relative employment rates according to the matching function (15). Matching

frictions imply that firms need to pay greater wages as the number of employed increases (the more

so the greater α is), because labor market tightness increases. Thus, we can state the following

proposition.

Proposition 1. With endogenous technologies, an increase in the relative number of skilled results

in an increase in their wage and employment rate relative to unskilled, if 2 < ε < 2 + α, and in a

decrease otherwise.

Let us now examine more closely the labor market effects of an increase in the relative supply of

skilled, H/L. Consider first the case where ε < 2. In this case the labor demand curve is downward-

sloping and an increase in H/L shifts it down, so the situation is the same as in Figure 5: both the

skill premium and the relative employment rate of the skilled decrease.

Now consider the more interesting case where ε > 2. In this case the labor demand curve is

upward-sloping and an increase in H/L shifts it up. The overall effect on relative wages and

employment rates depends on whether wages increase more strongly with employment according

to relative matching (15) or labor demand (25): whether the relative wage curve (15) crosses

relative labor demand (25) from below (Figure 6, panel a) or above (Figure 6, panel b). In the first

case where ε < 2 + α (labor demand is relatively elastic compared to the wage curve8), relative

wages and employment of the skilled increase. In contrast, in the second case where ε > 2 + α

(labor demand is relatively inelastic), relative wages and employment of skilled decrease. The

intuition is that when α is small compared to ε, so that labor markets have small matching frictions

and an increase in the relative labor market tightness does not affect wages much, while the

labor demand curve is relatively steep, so that a given change in the wage premium does not

affect relative employment much, the following situation arises: The additional workers are very

efficiently channeled to employment, but labor demand does not react sufficiently strongly to absorb

the increased supply. Thus, the skill premium needs to drop, reducing the relative employment

rate of the skilled. Moreover, since the relative number of employed decreases, technology adjusts

away from skilled towards unskilled workers. Note that the conditions for the skill premium to be

increasing in the skill ratio are more stringent here than in models of directed technological change

without unemployment (e.g., Acemoglu (1998, 2002)), where ε > 2 is the only relevant condition.

Finally, note that the relative size of the wage and employment response also depends on the

8The elasticity of labor demand is given by 1
ε−2

according to (25) and the elasticity of the wage curve is given

by 1
α

according to (15).

12



elasticities of the wage curve and labor demand. When α tends to infinity (very inelastic labor

supply), the wage curve becomes vertical and all the adjustment in response to a greater skill supply

happens through the skill premium, which increases, whereas employment rates are unaffected. In

this case, the model is equivalent to the one with exogenous labor supply (Acemoglu (1998, 2002)).

Differently, when α tends to zero (very elastic labor supply), the wage curve becomes horizontal

and all the adjustment happens via the relative employment rate, which decreases, with no effect

on the skill premium.

2.5 Labor Market Institutions

We now introduce unemployment benefits and firing costs in the model. Again, we follow Helpman

and Itskhoki (2007) in modeling labor market frictions. For simplicity, we assume that unem-

ployment benefits and firing costs are the same for skilled and unskilled workers. Let bu denote

unemployment benefits, which is the income of workers who do not find a job, and let bf be firing

costs, which is a transfer to workers who get matched and are then fired. We assume that workers

who get matched are unsuitable for the job with probability δ, in which case they are fired. Thus,

a firm that wants to have j employees needs to recruit j/(1− δ) workers, and bears a search cost

of ajx
α
j j/(1 − δ). In addition, since it fires a fraction δ of hired workers, it faces a firing cost of

bfδj/(1− δ).

We consider a firm in sector j that has j employees after recruiting and firing. Its revenue is given

by equation (8). We assume that a worker who loses his job gets unemployment benefits bu. Again,

we follow Stole and Zwiebel (1996a,b) and assume that marginal surplus of each worker is equally

divided between the worker and the firm. If wj(j) is the equilibrium wage rate as a function of

employment, this implies the following split of revenues:

∂

∂j

[
Y

1/σ
j (Zj)

σ−1
σ PjEj − wj(j)j

]
= wj(j)− bu (29)

The left-hand side is the marginal gain of the firm from employing an additional worker, taking into

account that his departure will impact on the wage rate of the remaining workers. The right-hand

side is the marginal gain of the worker of being employed, which is given by the difference between

the wage rate and the unemployment benefit. This condition leads to a differential equation with

the following solution:9

wj(j) =
σ − 1

2σ − 1

Y
1/σ
j (Zj)

σ−1
σ PjEj

j
+

1

2
bu (30)

Hence, wages equal a fraction σ−1
2σ−1 of revenues divided by the number of employees plus half of

9This can be verified by substituting (30) into (29).
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the outside option. This implies that the firm gets the remaining share σ
2σ−1 of revenues minus

half of the workers’ total unemployment benefits. The firm then chooses employment to maximize

profits, given by

max
j

σ

2σ − 1
Y

1/σ
j (Zj)

σ−1
σ PjEj − bjj − µ. (31)

where the hiring costs per worker now equal bj = 1
2bu + bfδ/(1− δ) + ajx

α
j /(1− δ).

The first-order condition of this problem can be solved for optimal employment, which is given by

j =
[
σ−1
2σ−1Z

σ−1
σ PjEj(bj)

−1
]σ
Yj . Employment of each firm is increasing in the sectoral price index

Pj and sector size Yj , while it is decreasing in hiring costs bj . Moreover, optimal prices are given

by pj = 2σ−1
σ−1

bj
Z . Finally, the expression for optimal employment implies that wj = bj + 1

2bu.

From the expression for hiring costs, bj , and the relation between wages and hiring costs, we again

derive the relative matching function (wage curve):

wH − 1
2bu

wL − 1
2bu

=

aH
(
HE
H

)α
+δbf

1−δ + 1
2bu

aL
(
LE
L

)α
+δbf

1−δ + 1
2bu

(32)

Further, using relative demand for the sectoral aggregate goods, (17), the fact that pj = PjAj ,

the relation between relative technologies from the free entry conditions, (24), the expression for

optimal prices, and the relation between wages and hiring costs, we derive the relative inverse

demand for skilled workers:
wH − 1

2bu

wL − 1
2bu

= Zε−2

(
HE

LE

)ε−2

(33)

We can use the free entry conditions to derive expressions for HE and LE as functions

of relative employment rates: in the skilled sector, the condition ΠH = 0 implies that

1
2σ−1ZPHHE − µ = 0, which can be solved for HE = (2σ − 1)µZ−1

[
1 +

(
PH
PL

)ε−1
] −1
ε−1

=

(2σ−1)µZ−1

[
1 +

(
ZxH
xL

)1−ε (
H
L

)1−ε] −1
ε−1

. Similarly, LE = (2σ−1)µ

[
1 +

(
ZxH
xL

)ε−1 (
H
L

)ε−1
] −1
ε−1

.

Then, combining equations (32) and (33) using the above expressions for HE and LE , we can derive

an implicit equation for the equilibrium relative employment rate of the skilled:

Zε−1

1 +
(
ZxH
xL

)1−ε (
H
L

)1−ε
1 +

(
ZxH
xL

)1−ε (
H
L

)1−ε

ε−2
1−ε

=

aHH
−α

(2σ−1)µZ−1

[
1+
(
ZxH
xL

)1−ε
(HL )

1−ε
] −1
ε−1

α+δbf
1−δ + 1

2bu

aLL−α

(2σ−1)µ

[
1+
(
ZxH
xL

)ε−1

(HL )
ε−1
] −1
ε−1

α+δbf
1−δ + 1

2bu

(34)

As this equation cannot be solved analytically, we have to rely on simulations for the comparative
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statics effects of an increase in the skill ratio. In Figure 7 we plot the relative employment rate of

skilled workers xH/xL, the skill premium, wH/wL, and the relative productivity of skill, AH/AL,

as a function of the skill ratio for different levels of unemployment benefits for the case where

2 < ε < 2 + α.10 We consider ε = 2.25 and α = 1.1711 and three levels of unemployment benefits:

bu ∈ {0, 0.2, 0.25}. We can see that when unemployment benefits are zero (solid line), relative

employment rates, skill premia and relative productivity unambiguously increase in the skill ratio.

However, for positive unemployment benefits (bu = 0.2: dashed line, bu = 0.25: dashed-dotted line),

the relation is non-monotonic: relative employment rates, skill premia and relative productivity

increase in the skill ratio for low levels of the skill ratio up to a threshold, where things turn around

and relative employment rates, the skill premium and relative productivity start to decline in the

skill ratio. Note also that the threshold level of the skill ratio is decreasing in the unemployment

benefit. Thus, the decrease starts sooner the higher the unemployment benefit. We thus expect that

when unemployment benefits are low, an increase in the skill ratio increases the relative employment

rate of skilled, but when unemployment benefits are sufficiently high, it has the opposite effect.

What is the reason for the non-monotonic relationship between relative employment rates, wage

premia, technology and the skill ratio in the presence of unemployment benefits? Initially, as

the skill ratio rises, wages and employment rates of skilled workers rise, as technology adjusts

endogenously, increasing the relative productivity of skilled workers, while wages and employment

of unskilled workers fall with the decline in their relative productivity. At some point, however,

unskilled wages are very close to the unemployment benefit and thus cannot fall further, since

wages equal half of the unemployment benefit plus the expression related to labor market tightness

(see above). Moreover, any reduction in employment or exit of firms from the unskilled sector would

reduce profits12 and, therefore, wages.13 Thus, as wages and profits in the unskilled sector cannot

fall further, an increase in H at this point needs to be associated with an increase in employment

in the unskilled sector. This induces an endogenous adjustment of technology towards increasing

the productivity of the unskilled, which in turn increases unskilled wages and employment rates

via higher demand for unskilled workers.

The impact of firing costs is qualitatively the same as the one of unemployment benefits, as we

verify in unreported simulations. This can be seen from equation (34), where up to a scaling factor,

firing costs and unemployment benefits enter in the same way. Thus, changes in the unemployment

benefit and the firing cost can change the relation between the the skill ratio and the direction of

10For ε < 2 or ε > 2 + α the qualitative implications of the model are not affected by the introduction of labor
market regulations.

11For the choice of parameter values see section 3.1 on calibration.

12Since profits in the unskilled sector equal ΠL = PLLE − µ and the market size effect is stronger than the price
effect whenever ε > 1.

13Since profits are proportional to revenue and wages are a fraction of revenue plus one half the unemployment
benefit.
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technological change, relative employment rates and skill premia. In countries with very regulated

labor markets an increase in the skill ratio may not trigger skill-biased technological change and

therefore not increase the skill premium and the relative employment rate of skilled workers.

2.6 Migration

In this section, we augment our model with endogenous migration, which provides us with fur-

ther predictions that we can use to test models of directed technological change. Regarding the

labor market, we use the basic model without unemployment benefits and firing costs for ease of

exposition.

Let utility for individual k of skill type j associated with migration to the Organisation for Economic

Co-operation and Development (OECD) countries be given by

UMj (k) = wOECDj xOECDj − cj − ε(k), j ∈ H,L

where wOECDj xOECDj is the expected wage in the OECD, cj is a deterministic skill-specific cost of

migration to the OECD in terms of utility and ε(k) is a stochastic migration cost that is individual-

specific, and let utility associated with staying in the country of origin be given by

USj = wjxj . j ∈ H,L

Then, the probability of emigration for a skilled (unskilled) worker can be written as the probability

that the stochastic migration cost is sufficiently low, so that the expected wage in the OECD –

adjusted for the deterministic part of migration costs – is larger than the expected wage in the

country of origin:

Prob(UMj (k) > USj ) = Prob(ε < wOECDj xOECDj − wjxj − cj), j ∈ H,L

Assuming that migration costs are logistically distributed with mean zero and variance unity, the

migration rate for skill type j is:

sj = Prob(UMj (k) > USj ) =
1

1 + e−(wOECDj xOECDj −wjxj−cj)
, j ∈ H,L (35)

In the case of endogenous technology, we substitute for expected wages wHxH and wLxL as func-

tions of sH and sL as follows. According to the matching function (14), wages of the skilled and
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unskilled workers can be expressed as

wH = aH

[
HE

(1− sH)H

]α
wL = aL

[
LE

(1− sL)L

]α

We can substitute for HE and LE using the free entry conditions (13)

πH =

(
1

2σ − 1

)
ZPHHE − µ = 0 πL =

(
1

2σ − 1

)
PLLE − µ = 0

where we substituted for pHyH and pLyL by first using the intermediate production functions

yH = Zh and yL = l and then using the fact that pHh = PHYH
ZAH

= PHHE and pLl = PLYL
AL

= PLLE .

Next, we use the optimal price index (5) to substitute for PH =

[
1 +

(
PH
PL

)ε−1
] 1
ε−1

and, analo-

gously, for PL. We further substitute for the sectoral relative price PH/PL using (17) together with

relative technologies (24) and for relative employment (26).

As a result, we can re-write wages wH and wL and employment rates xH and xL to express expected

wages as functions of emigration rates sH and sL:14

wHxH = aH

 µ(2σ − 1)

(1− sH)HZ

(
1 + Z

(α+1)(ε−1)
ε−2−α

[
aL
aH

(
(1− sH)H

(1− sL)L

)α] ε−1
ε−2−α

) 1
1−ε
1+α

(36)

wLxL = aL

µ(2σ − 1)

(1− sL)L

(
1 + Z

(α+1)(1−ε)
ε−2−α

[
aH
aL

(
(1− sL)L

(1− sH)H

)α] ε−1
ε−2−α

) 1
1−ε
1+α

(37)

Substituting (36) and (37) into the migration equations (35), we obtain two equations in sH and sL.

Even though these equations cannot be solved analytically, some intuition can be gained from them.

Suppose the skilled migration rate increases above its equilibrium value. This, on the one hand,

reduces expected wages because a decrease in skill endowments leads to an endogenous adjustment

of technology and, thus, demand for skills and further increases incentives for emigration (term

in inner square brackets). On the other hand, an increase in skilled migration increases expected

wages because of the increase in labor market tightness (first term in outer square brackets).

Overall, this second effect becomes dominating whenever the skilled migration rate is too far above

its equilibrium value. While the first effect reinforces migration incentives and suggests multiplicity

of equilibria as found in Grossmann and Stadelmann (2011) and De la Croix and Docquier (2010),

14Note that xH =

 µ(2σ−1)
(1−sH )HZ

(
1 + Z

(α+1)(ε−1)
ε−2−α

[
aL
aH

(
(1−sH )H
(1−sL)L

)α] ε−1
ε−2−α

) 1
1−ε

, wH = aHx
α
H and

xL =

 µ(2σ−1)
(1−sL)L

(
1 + Z

(α+1)(1−ε)
ε−2−α

[
aH
aL

(
(1−sL)L
(1−sH )H

)α] ε−1
ε−2−α

) 1
1−ε

, wL = aLx
α
L.
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the second effect guarantees that the equilibrium is unique, as is confirmed by our simulations as

follows.

3 Simulation of Unemployment Rates and Brain Drain

3.1 Calibration

We now describe the choice of parameter values that we use to simulate the model with migration.

A key parameter in our model is the elasticity of substitution between skilled and unskilled workers,

ε. Gancia, Müller and Zilibotti (2011) calibrate ε simultaneously together with Z, the factor deter-

mining the exogenous difference in the relative productivity of skilled workers. They use a version

of equation (25) without unemployment to fit the evolution of the US skill premium, defined as the

relative wage of college graduates over non-college graduates between 1970 and 2000 and calibrate

ε = 2.25 and Z = 1.96. Thus, in our baseline calibration we set ε=2.25. Note that this value is

somewhat larger than the value of the short-run elasticity between skilled and unskilled labor found

by other studies (e.g., Ciccone and Peri (2006) provide estimates for this parameter in the interval

[1.4,2]).15 We therefore also consider alternative values for ε ∈ {1.75, 2, 2.5} in robustness checks.

We set Z = 1.96 throughout our simulations.

Another important parameter is α, the elasticity of the matching function.This parameter is related

to the elasticity of the standard Cobb-Douglas matching function with respect to vacancies, for

which many estimates are available, via the relation α = (1 − η)/η.16 The estimates for this

parameter differ substantially across studies (see Petrongolo and Pissarides (2001) for a survey)

and range from 0.1 to around 0.9, with most of the estimates lying somewhere between 0.3 and 0.5.

Among the more recent estimates, Shimer (2005) finds η to equal 0.27 for the US and Mortensen

and Nagypal (2007) provide a point estimate of 0.54 for the same parameter. When addressing

problems with both approaches, Brügemann (2008) reports α to lie in the interval [0.37, 0.46]. We

thus consider values of η equal to 0.27, 0.46 and 0.54 for our calibration exercise, which implies

values for α of 2.7, 1.17. Note that all the estimates for α (including the highest available estimate

η = 0.54, which corresponds to α = 0.85) satisfy the condition ε < 2+α. Therefore, for illustration

purposes we also choose an unrealistically low value of α equal to 0.1 (η = 0.9) such that ε > 2+α.

In sum, we consider the values α ∈ {0.1, 0.85, 1.17, 2.7}.

15Also note, however, that the elasticity of substitution between skilled and unskilled workers may be smaller in
developed than in developing countries, for which no comparable estimates exist.

16Let the matching function be M = a1V ηN1−η , where V is the number of vacancies and N is the number of
unemployed. Remember that x = M/N is the probability for a worker to find a job. The probability for a firm to find

a worker can then be written as M/V = a
1/η
1 x(η−1)/η . As a consequence, a firm that wants to hire m workers has

to post v = a
−1/η
1 x(1−η)/ηm vacancies. Assume that posting v vacancies costs a2v in terms of the final good. Then

a firm that wants to hire m workers has to bear a hiring cost of axαm, where a = a2/a
1/η
1 and α = (1− η)/η > 0.

18



To calibrate the other parameters of the matching functions, aH and aL, we use the matching

function (14) together with the fact that bj = wj and data on employment-weighted averages

of wage rates and employment rates of the developing countries in our sample (the set of non-

OECD countries in our data). Note that since these parameters measure the efficiency of labor

market institutions, assuming them to be the same for all countries is a constraint imposed by the

availability of data.

Consistently with the consensus in the international trade literature, we set the elasticity between

varieties, σ, equal to 4. This is the mean value of the substitution elasticity estimates from Broda

and Weinstein (2006), who use trade data to estimate this parameter. Similarly, Bernard, Eaton,

Jensen and Kortum (2003) find an estimate of 3.8 when fitting US plant and macro data.

Moreover, we need parameter values for the OECD employment rates and wages. According to

our data, the employment-weighted average of OECD employment rates is 0.96 for skilled and

0.95 for unskilled workers. Similarly, average yearly OECD wages in constant PPPs are around

US$ 37,000 for skilled and US$ 15,000 for unskilled workers. We therefore set wOECD
H = 0.37 and

wOECD
L = 0.15, xOECD

H = 0.96 and xOECD
L = 0.95.

To calibrate the fixed cost, µ, we use the equation for expected wages of skilled workers (36) to

solve for µ, taking as given employment-weighted averages of unskilled wages, employment rates

and migration rates of developing countries.

Finally, to obtain estimates of the average migration costs of skilled and unskilled workers, we

calibrate cH and cL using the equations for the migration rates (35) to match migration rates of

skilled and unskilled workers for the average developing country in our sample exactly, given the

average developing-country skill ratio H/L = 0.05 and average working-age population of L=10.

We summarize the calibrated parameter values in Table 1.

3.2 The Impact of the Elasticity of Substitution

According to our model, the effects of changes in the skill ratio on expected wages and emigration

rates crucially depend on the elasticity of substitution between skilled and unskilled workers. Note

that, given that employment rates are a positive monotonous transformation of wages, the pattern

for expected wages is very much alike that for each wages and employment rates separately. We

therefore show only expected wages for space considerations in the following but keep in mind

that arguments concerning the skill ratio effects run analogously for wages and employment rates.

Figure 8 (panel a) shows the expected wage of skilled relative to unskilled workers as a function of

the skill ratio for different values of ε. As predicted by the closed economy model in Proposition

1, also with endogenous migration rates the skill premium and the relative employment rate of
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the skilled are increasing in the skill ratio as long as ε ∈ (2, 2 + α), i.e. for ε ∈ {2.25, 2.5}. In

contrast, skill premia and relative employment rates are constant, if ε = 2, and they are decreasing

in the skill ratio for ε = 1.75. The positive relative wage and employment effects are greater for

ε = 2.5 compared to ε = 2.25, as the negative supply effect becomes weaker compared to the

positive technology effect. Panel b shows how the change in expected relative wages translates into

changes in the equilibrium relative emigration rates of skilled and unskilled workers, the so-called

brain drain. For ε = 2.25 and ε = 2.5, the relative emigration rate of skilled workers decreases in

the skill ratio. Overall, the quantitative effects are most pronounced for small skill ratios (below

0.2), while they become less important for greater skill ratios. We thus expect a larger impact

of skill accumulation for relatively skill-scarce developing countries. For ε equal to 1.75 the brain

drain increases in the skill ratio: as relative expected wages of the skilled decrease, skilled workers’

incentives to emigrate decrease and their emigration rate increases relative to those of unskilled

workers. For ε = 2, while the skill premium does not change (as the technology and the supply

effects of a greater ratio of skilled employed exactly cancel each other), the brain drain increases

slightly because the difference in absolute expected wages between skilled and unskilled decreases.

Panel c shows the effect of the skill ratio on the skill bias in technology for the different elasticities

of substitution. While the skill-bias is positive for all values ε > 1, its increase is greater for greater

ε.

3.3 The Impact of the Elasticity of the Wage Curve

Apart from the elasticity of substitution between skilled and unskilled workers, ε, the sign and size

of effects of the skill ratio on the labor market and emigration crucially depends on the elasticity of

the wage curve, α. Figure 9 shows relative expected wages and emigration rates as well as the skill

bias in technology for three different values of α ∈ {0.1, 1.17, 2.7} corresponding to the baseline

specification (1.17) and a value smaller and greater than that. As we now keep ε constant at 2.25,

curves for α = 1.17 in this figure are exactly the same as those for ε = 2.25 in the previous

figure. Again, for ε ∈ (2, 2 + α) – for example when α equal to 1.17 and 2.7 – relative wages and

employment rates of the skilled increase and, correspondingly, the relative emigration rate of the

skilled decreases. In turn, for ε > 2 +α – for example when α = 0.1 – a greater skill ratio decreases

relative expected skilled wages and increases the brain drain. This is because when labor market

frictions are low enough for the elasticity of the wage curve to exceed the elasticity of labor demand,

an increase in the supply of skilled workers cannot be accommodated by firms. Instead, the relative

number of skilled employed decreases, which decreases relative employment rates and wages of the

skilled. We can also see that, in this case, the technological bias is actually directed towards the

unskilled – even though labor demand is upward-slowing (ε > 2) - as a greater skill ratio does not

translate into a greater but a smaller ratio of skilled employed.
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3.4 The Impact of Skill-Biased Technological Change

The relation between skill endowments and the brain drain according to our model is very different

depending on whether we assume technology to be exogenous or endogenous. In this exercise we

use our preferred calibration for ε = 2.25 and α = 1.17 and again choose migration costs to match

observed migration rates for an average developing country with a skill ratio of 0.1. Table 2 shows

emigration rates that correspond to progressively increasing levels of the skill ratio with exogenous

and endogenous technology. In the former case, technology parameter values AH and AL were

chosen such that emigration rates are exactly the same as in the case of endogenous technology

for a skill ratio of 0.05. Consistent with Remark 1 and Proposition 1, an increase in the skill ratio

results in an increase in brain drain in the case where technology is assumed to remain constant but

results in an decrease in the brain drain when technology can adjust endogenously to changes in the

skill ratio. The intuition is pretty straightforward: with endogenous technology and ε ∈ (2, 2 + α)

the relative demand curve for skilled workers is upward-sloping and sufficiently elastic such that an

increase in skill endowments leads to an increase in the relative employment rate of skilled workers

and an increase in their relative expected wage. As a result, their relative emigration rate drops.

In contrast, with exogenous technology the relative demand curve for skilled workers is downward

sloping. Thus, an increase in the skill ratio increases the unemployment rate of skilled workers,

reduces their expected wage and increases their emigration rate.

4 Empirical evidence

In this section we provide empirical evidence on the relations between the skill ratio and the skill

premium, relative productivity, unemployment and brain drain that are predicted by our theoretical

model. We first briefly discuss the data and then turn to the regression results. We conclude with a

quantitative simulation exercise where we try to replicate correlations between variables of interest

observed in the data using our theoretical model.

Throughout, we define skilled workers as those with at least some tertiary education, while we con-

sider all other workers as unskilled. Data on emigration to the OECD by skill level are from Beine,

Docquier and Rapoport (2008). Data on human capital come from Barro and Lee (2000, 2011)

and De La Fuente and Domenech (2002). Data on wages by skill category are constructed using

the occupational wages around the world data set collected by Freeman and Oostendorp (2000),

considering a fixed number of skilled and unskilled occupations. Unfortunately, we do not have

wages by educational attainment, but we choose occupations so that they roughly correspond to

our skill categories. Information on unemployment rates by educational attainment are constructed

from the ILO Key Indicators of the Labour Market Database (2009). We also employ data on la-
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bor market regulation from the IMF labor market regulation database (Aleksynska and Schindler

(2011)) to obtain information on replacement rates, minimum wages and firing costs, and from

the Fraser Institute Freedom of the World 2011 Database (Gwartney et al. (2011)), from which

we obtain an overall labor market regulation index. Migration data are available for a balanced

panel of countries for 1990 and 2000, while for the other data we have an unbalanced panel in

five-year intervals from 1985 to 2000 (wage data) and from 1980-2005 (unemployment data). A

more detailed discussion of the data and the list of countries used in the regressions can be found

in the Appendix.

4.1 Skill Ratio, Wages and Technology

We first test the predictions of our model with respect to the effect of skill ratios on the skill

premium and the relative productivity of skilled. In the absence of skill-biased technological change,

we should observe a strong negative correlation between the skill ratio and the skill premium.

Differently, when technological change is directed, we expect a very low negative or even a positive

correlation between the skill ratio and the skill premium, as the demand for skill increases with

skill supply.

To see this, consider again the expression for the skill premium (18) from our model, reproduced

here for convenience:

wH
wL
≡ ω =

[
ZAH
AL

]1− 1
ε
[
HE

LE

]−1
ε

(38)

Thus, when there is no connection between skill ratios and the relative productivity of skilled

workers, the model predicts a log-linear relation between the skill premium and the skill ratio,

with a constant α ≡
(
1− 1

ε

)
log(ZAHAL

) and slope β ≡ − 1
ε . Taking logs of equation (38) and

proxying for HE/LE using H/L,17 we thus obtain

log

(
wHit
wLit

)
= α+ β log(H/L)it + γ log(X)it + µt + ui + νit, (39)

where log(wHit/wLit) is the (log) skill premium in country i in period t, log(X)it is a vector

of country controls, which includes the level of real per capita GDP in purchasing power parities

(PPP), the real growth rate of GDP in PPP and openness. µt is a time dummy, ui is an unobserved

country-specific effect and νit is an error term. We include openness18 to control for potential

omitted variable bias, since it is likely to be correlated with the skill ratio and may also affect the

relative demand for skilled workers (e.g. through a skill-biased scale effect, see Epifani and Gancia

(2008)). For similar reasons, we also include per capita GDP as a control.

17Skill-specific unemployment rates and wage data are jointly available only for a very limited number of countries.

18Defined as (exports+imports)/GDP.
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We run this regression on an unbalanced panel of developing and developed countries in five-year

intervals from 1985 to 2000. Results are presented in columns (1)-(6) of Table 3. Columns (1) to

(3) present results from the pooled cross-section regression, controlling for time dummies, which

squeezes out the pure cross-section variation. In column (1), where we include no further controls,

the coefficient for the skill ratio is -0.214 and strongly significant. Thus, in the cross section, a one

percent higher skill ratio is associated with a 0.2 percent lower skill premium. However, when adding

further controls, which may serve as proxies for differences in the relative productivity of skilled

workers, in column (2), the coefficient of skill ratio drops to -0.1 and becomes insignificant. Since

one may be concerned that skill ratios are endogenous to the skill premium because higher skill

premia may induce people to acquire more education, in the next specification we instrument the

skill ratio with public education expenditure and with 5-year lagged values of the skill ratio. Public

education expenditure is arguably an exogenous determinant of the skill ratio, being independent

of the skill premium. Whether lagged values of the skill ratio are a valid instrument is less clear

ex ante, but we can test this. In column (3) we present the IV estimate, obtaining a marginally

significant coefficient of -0.15. Note that the instruments are valid: according to the F-statistic

of 312 the instruments are strongly correlated with the endogenous variable, while the P-value

of 0.8 for the Sargan test does not allow to reject the null hypothesis that the instruments are

uncorrelated with the error term.19 In columns (4)-(6), we use a fixed effects panel estimator to

control for unobserved country-specific effects, thus relying on the within-country variation of our

data. In column (4) we just use skill ratio as a control and obtain an insignificant coefficient of

-0.02. The coefficient remains insignificant, when adding further controls in column (5), or when

employing an instrumental variable strategy (estimated in first differences since the fixed effects

IV-estimator is inconsistent when using lagged values as an instrument) in column (6).

The finding that an accumulation of skilled workers does not lead to a drop in the relative price of

skilled workers suggests that the relative demand for skill increases with relative supply. In fact,

even the negative effect of -0.2 found in the cross-section is not consistent with a story of exogenous

relative demand for skills. This estimate implies an elasticity of substitution between skilled and

unskilled workers equal to 5, which is far larger than the respective consensus estimates, which

range from 1.4 to around 2.5. (see, e.g. Ciccone and Peri (2006), Gancia et al. (2011)).20 Note that

while our model does not only predict a weak negative but in fact a positive relation between skill

premia and skill ratios when 2 < ε < 2 + α (see equation (28)), this relation may be weak when α

19In unreported regressions, we obtain very similar point estimates for the just identified case, using only public
education expenditure as an instrument.

20The fact that the relation between wage premia and skill ratios that is found in the data is much weaker
than expected is also observed in Caselli and Coleman (2006). As prominently argued in their paper, a relative
productivity of skilled workers that is higher in more skill-abundant countries would serve to reconcile expected and
observed relations.
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is small (labor markets are relatively flexible) and may thus be impossible to detect.21

We can take equation (38) a bit further and use it to back out the implied relative productivity

of skill, AH/AL, given an estimate of ε.22 Using our baseline calibration, we set ε = 2.25, which

is close to the upper end of existing estimates for this parameter and thus minimizes the chance

that we find a (positive) relation between the relative productivity of skill and the skill ratio, as

it implies a relative demand curve that is rather flat. In columns (7)-(12) of Table 3 we present

results from regressing the so obtained relative productivities on skill ratios, using the specification

log(AH/AL)it = α+ β log(H/L)it + γ log(X)it + µt + ui + νit. (40)

In columns (7)-(9) we pool the data and control for time dummies. In column (7) we use the log

skill ratio as the sole control, in column (8) we add GDP per capita, GDP growth and openness as

controls and in column (9) we instrument for skill ratios with lagged values and public education

expenditure. In all specifications, we obtain similar results: the coefficient of the skill ratio is positive

(between 0.415 and 0.595) and strongly significant. Moreover, the instruments are strong and valid

(the first-stage F-statistic is 308, the P-value for the overidentifying restrictions is 0.78).23 Thus, a

one percent increase in the skill ratio is associated with a 0.4 to 0.6 percent increase in the relative

productivity of the skilled. In columns (10)-(12), we repeat the same specifications using a fixed

effects panel estimator. We now obtain somewhat larger and again very significant estimates for the

coefficient of interest, ranging from 0.572 (for the IV estimate implemented in first differences) to

0.754. We conclude that there is evidence for the relative productivity of skilled workers to respond

endogenously to the skill ratio.

4.2 Skill Ratio and Unemployment

We now test our model’s prediction regarding the effect of the skill ratio on the relative unem-

ployment rate of skilled workers. According to equation (27), for 0 < ε < 2 + α, the relative

unemployment rate of skilled should be negatively related to the skill ratio. To test this prediction,

21Finally, we expect measurement error to be considerable for wages, in particular for developing countries. Since
ILO only collects wages for workers in the formal sector, measured unskilled wages are probably upward-biased in
developing countries, implying that the true skill premia in skill-scarce countries are higher than in our data. Thus,
the measurement error for wages is likely to be negatively correlated with the skill ratio, leading to an attenuation
bias of the coefficient of the latter.

22Alternatively, we could also use equation (28), which requires a choice of α but gives similar results for the
values of α derived from the literature.

23Again, using only public education expenditure as an instrument gives very similar but less precise estimates.
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we use the following econometric specification:24

log(uHit/uLit) = α+ β log(H/L)it + γ log(X)it + µt + ui + νit, (41)

where log(uHit/uLit) is the (log) relative unemployment rate of skilled in country i in period t

and log(X)it is the usual vector of country controls. In this regression, to maximize the number of

observations, we use an unbalanced panel in five year intervals from 1980-2005. In columns (1)-(3)

of Table 4 we report results of the pooled regression, controlling for time dummies. In column (1)

the skill ratio is the only other control. The coefficient of interest is -0.457 and significant at the one

percent level. Thus, a one percent increase in the skill ratio implies a 0.457 percent reduction in the

relative unemployment rate of skilled. In column (2) where add the other controls the coefficient of

the skill ratio increases slightly in magnitude and remains strongly significant. To address potential

endogeneity of the skill ratio with respect to unemployment (higher relative unemployment may

induce lower skill ratios), in column (3) we instrument for the skill ratio using lagged values of

the same variable and public education expenditure as instruments. The coefficient of the skill

ratio is unaffected and remains strongly significant, while the instruments are valid.25 Finally, in

columns (4)-(6) we repeat the same specifications, controlling also for country fixed effects. The

results are similar to the ones of the pooled regressions and remain significant, except for the last

column, where we present IV estimates implemented in first differences, using lagged skill ratio

and public education expenditure as instruments. Here, the coefficient of the skill ratio is also

significantly larger. However, the first-stage F-statistic is only 6.15, indicating that the instrument

is rather weak, which may result in biased and less precise estimates. Still, overall these results

are consistent with the predictions of our model: an increase in the skill ratio reduces the relative

unemployment rate of skilled workers.26

Our extended model predicts that the impact of the skill ratio on the relative unemployment rate

should also depend on the level of unemployment benefits and firing costs. In particular, our model

suggests a negative relation between the skill ratio and relative unemployment rates for low levels

of unemployment benefits and firing costs, and a positive relation for sufficiently high levels of

24We use unemployment rates instead of employment rates because it is a more standard measure of labor market
outcomes. Using employment rates instead, we obtain similar results.

25The first-stage F-statistic of 413 implies that the instruments are very strongly correlated with the potentially
endogenous variable and the P-value of 0.98 of the Sargan test implies that the overidentifying restrictions are valid.
Again, we obtain similar, but less precise, point estimates using only education expenditure as an instrument.

26Ideally, we would like to control a for measure of relative productivity in the regressions. In this case, we would
expect the coefficient of the skill ratio to become negative. Unfortunately, we are unable to do this because the
sample overlap for unemployment and wage data is small. However, we do perform this exercise in the brain drain
regressions, where we find evidence in line with this prediction.
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these variables (see section 2.5). To test for this prediction, we run the following regression:

log(uHit/uLit) = α+β1 log(H/L)it+β2LMRigit+β3 log(H/L)it∗LMRigit+γ log(X)it+µt+ui+νit,

(42)

where LMRigit is a measure of labor market rigidity. Thus, the elasticity of relative unemployment

with respect to the skill ratio is now: ∂ log(uHit/uLit)
∂ log(Hit/Lit)

= β1 +β3LMRigit. From our model we expect

β1 to be negative and β3 to be positive. The vector Xit includes our usual controls (GDP per capita,

GDP growth, openness). As measures of labor market rigidity, we alternatively use the replacement

rate, the ratio of minimum to median wages, a measure of firing costs from the IMF labor market

institutions database (Aleksynska and Schindler (2011)) and the labor market regulation index

from the Fraser Institute Freedom of the World 2011 Database. Again, we use an unbalanced

panel in five-year intervals from 1980-2005. We present the results for these regressions in Table

5. In columns (1) to (4) we report results of the pooled regression, controlling for time dummies.

We find β1, the impact of the skill ratio when labor market rigidity is zero, to be negative and

significant for three out of four of our measures of labor market regulation. Furthermore, we find

β3, the coefficient of the interaction term, to be positive and significant in all cases except for firing

costs. The direct impact of labor market regulation on the relative unemployment rate of skilled is

always positive and significant. In columns (4)-(8), we account for potential endogeneity of the skill

ratio and the interaction term, by instrumenting them with the lagged skill ratio, public education

expenditure, and their interactions with the different measures of labor market rigidity. The results

for the direct effect of the skill ratio and the interaction term continue to hold. With regard to

the validity of the employed instruments, the F-statistics are always very large, so we can exclude

weak instrument problems and the null hypothesis that the instruments are uncorrelated with the

error term can never be rejected. Finally, in columns (9)-(12) we report results for the fixed effects

specifications. Again, the coefficient of the skill ratio is negative and significant in all specifications

except for the last one (labor market regulation index) and the coefficient of the interaction term

is always positive and significant except for the last specification. Summing up, in line with our

theoretical prediction, we find strong evidence for rigid labor market institutions to reduce the

negative effect of the skill ratio on relative unemployment rates of skilled workers.

4.3 Skill Ratio, Migration Rates and Brain Drain

The last prediction derived from our model relates to the impact of the skill ratio on brain drain (the

relative emigration rate of skilled workers). According to the model and given plausible parameter

values, an increase in the skill ratio should reduce the relative emigration rate of skilled workers.

Note that the logistic migration equations (35) imply that the logistic transformation of migration

rates is linear: log(sj/(1− sj)) = wOECDj xOECDj −wjxj − cj . Thus, the brain drain log(sH/sL) ≈
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log(sH/(1 − sH)) − log(sL/(1 − sL)) = (wOECDH xOECDH − wOECDL xOECDL ) − (wHxH − wLxL) −

(cH − cL). We proxy for the difference in expected wages using a function of the skill ratio and

other controls, specifying wHxH −wLxL = β log(H/L) +γ1 log(X1it) +µt+ui+ νit, and we model

the deterministic migration cost as cH − cL = γ2log(X2it). We thus employ the following empirical

specification:

log(sH/sL)it = α+ β log(H/L)it + γ log(X)it + µt + ui + νit (43)

We test the model’s prediction using a panel of countries for the years 1990 and 2000. The vector

of country control variables includes again the level of GDP per capita, the growth rate of real

GDP and openness. In some specifications, we also proxy for the relative migration cost to the

OECD using distance to the OECD, a dummy for the country having been a colony of an OECD

country after 1945, and dummies for English and French as official languages. In columns (1)-

(3) of Table 6 we pool the observations and control for time dummies. In columns (1) and (2)

we use ten-year-lagged skill ratios as the main variable of interest.27 The coefficient of the skill

ratio in column (1) is strongly significant and implies that a one percent increase in the skill ratio

reduces the brain drain by around 0.76 percent. When adding further controls in column (2),

the magnitude of the coefficient of interest drops slightly, but remains very significant. In column

(3) we use contemporaneous skill ratios as the explanatory variable and instrument it using the

lagged skill ratio and public education expenditure as instruments. The coefficient on the skill

ratio remains similar (-0.66) and strongly significant, while the instruments are valid. In columns

(4)-(6) we repeat the same specifications using a fixed effects estimator. In columns (4) and (5)

the magnitude of the coefficient of the lagged skill ratio is somewhat reduced (to around -0.28 to

-0.35) but remains significant. The IV estimate in column (6) is considerably larger (-1.8) but the

first-stage F-statistic is only 2.4, indicating a weak instrument problem. Finally, in columns (7)

and (8), we add measures of the relative productivity of skilled workers as a control. Conditional

on technology, which should reduce brain drain, a higher skill ratio is now expected to increase

the brain drain. This is precisely what we find: the coefficient on relative productivity of skilled is

negative and significant, while the coefficient of the lagged skill ratio now turns positive. Thus, the

prediction regarding the effect of the skill ratio on brain drain is also supported by the data.

4.4 Predicted and Actual Correlations

For the last both qualitative and quantitative test of our model, we check if we can use it to

replicate a number of relations that we observe in the data. To this end, we proceed as follows.

27We do this since migration rates are measured as stocks and the emigration of skilled workers may occur with
a lag after education has been acquired. Therefore, an increase in the skill ratio would mechanically reduce the
migration rate and could lead to a spurious negative correlation between the two. Moreover, contemporaneous skill
ratios may also be subject to reverse causality.
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First, in order to be able to test the model, we calibrate all parameters using data from outside

the model, as explained in the section on calibration. Moreover, we use estimated migration costs

for each country.28 Thus, we do not match any data moments by construction. We take the OECD

as a single destination and take OECD wages and employment rates as exogenous. For the set of

countries used in the migration regressions (see data appendix for the list of countries), we take

endowments of skilled and unskilled workers for 1990 and 2000 and simulate the model for both

years.

To assess model fit, we pool data for 1990 and 2000 and regress variables of interest on each other.

We then compare the so obtained regression coefficients with the ones that we get from running

the same regressions on our simulated data. We compare coefficients from the following regressions

(all in logs): 1) the regression of the relative unemployment rate of skilled workers on the skill

ratio, 2) the regression of brain drain on the skill ratio, 3) the regression of the skill premium on

the skill ratio, 4) the regression of brain drain on the relative unemployment rate, 5) the regression

of changes in the brain drain between 1990 and 2000 on changes in the skill ratio, and 6) the

regression of relative productivity of skilled workers on the skill ratio.29 Our baseline calibration is

again ε = 2.25 and α = 1.17, but we also report results for ε ∈ {1.75, 2, 2.5} and α ∈ {0.85, 2.7}.

The results of this exercise are presented in Table 7. In the first row, we present the regression

coefficients that were obtained with the data. In the rows below we report regression coefficients

computed with the simulated data for different parameter values. Turning first to our baseline

calibration with ε = 2.25 and α = 1.17 (in bold in row 7), the model is able to replicate the signs

and the approximate magnitudes of almost all coefficients. Despite our parsimonious calibration,

the model fits quite well the coefficient of the regression of relative unemployment rates on skill

ratios (-0.26, compared to -0.21 in the data), the one of brain drain and skill ratios (-0.43 compared

to -0.82 in the data), the one between brain drain and relative unemployment rates (0.15 compared

to 0.26 in the data), between changes in the brain drain and changes in the skill ratio (-0.2 compared

to -0.55 in the data) and between relative productivities and skill ratio (0.3 compared to 0.42 in

the data). There is just one coefficient that our model cannot replicate: the one from the regression

of the skill premium on skill ratios (0.32 compared to -0.16 in the data). This, however, is not

surprising, since our model with labor market frictions always predicts the same sign for the

relation between wages and the skill ratio as for the one between employment rates and the skill

ratio.

28We regress the logistic transformation of migration rates, on the skill ratio and migration cost controls, instru-
menting for the skill ratio with public education expenditure.

log(sj/(1− sj))it = α+ β log(H/L)it + γ log(c)ij + µt + ui + νit, (44)

Then the predicted migration costs are given by ĉiH = −0.25(∗) log(distance) − 0.08Colony + 1.01(∗∗∗)English −
0.11French and ĉiL = −0.66(∗∗∗) log(distance)− 0.54Colony + 0.72(∗∗∗)English− 0.18French.

29Data on AH/AL are constructed using equation (18).
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We now briefly discuss results for different values of ε and α. For ε = 1.75 and any value of α

the regression coefficients mostly have the wrong signs. The only improvement is the coefficient of

the regression of the wage premium on the skill ratio, which now turns negative. Intuitively, when

ε < 2 the relative employment rate and the skill premium is decreasing in the skill ratio, because

the market size effect is not strong enough. For ε = 2, which is the case when relative productivity

is independent of the skill ratio (see equation (24)), the regression coefficients are in general too

small and often insignificant. Next, for ε = 2.5 the signs of the coefficients are the same ones as for

ε = 2.25 but the magnitude of the coefficients in general corresponds less well the data. Turning

to changes in α for ε = 2.25, we can observe that our results are not very sensitive to the value of

this parameter (as long as the condition ε < 2 + α is satisfied). Both for high and low values of α

the signs of the regression coefficients are maintained, though the magnitudes mostly correspond

less well the data.

We thus conclude that a very simple model of migration with endogenously directed technology

and ε > 2 performs reasonably well in terms of replicating the correlations between skill-specific

labor market outcomes and migration rates in the data. In contrast, the same model with ε < 2

– which implies a downward-sloping relative demand curve for skilled labor – cannot replicate the

salient features of the data. We take this as support for the mechanisms emphasized in our model.

5 Conclusion

In this paper, we have developed a model of directed technological change, frictional unemployment

and migration to examine the effects of a change in skill endowments on wages, employment rates

and emigration rates of skilled and unskilled workers. We found that for plausible values of the

elasticity of substitution between skilled and unskilled workers and the elasticity of matching work-

ers to jobs, returns to skill were an increasing function of skill ratios in the presence of endogenous

skill-biased technological change: an increase in the relative stock of skilled workers lead to lower

relative unemployment rates and higher skill premia. In consequence, the relative expected wage

rate of skilled workers increased, resulting in a lower relative emigration rate (brain drain). We have

provided empirical estimates and simulations of wages, employment rates and emigration rates to

confirm that increases in the skill ratio have empirically relevant and sizeable effects on these out-

comes. Moreover, we have shown that labor market institutions, such as unemployment benefits

and firing costs, interact with skill ratios in determining the reaction of technological change. An in-

crease in the skill ratio triggered skill-biased technological change provided that labor markets were

sufficiently flexible but may cause unskill-biased technological change when labor market frictions

are large. Our findings also fit the stylized facts on educational upgrading in developing countries

during the 1980s and the subsequent decrease in the brain drain during the 1990s. They suggest
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that education policies can contribute significantly to a slow down in brain drain and, therefore,

improve long-run perspectives for prosperity and growth in emigration countries.
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7 Appendix

7.1 Data

Wages

We construct wages for skilled and unskilled workers from the Occupational Wages around the

World (OWW) dataset that has been compiled by Freeman and Oostendorp (2000) from ILO

data. This data set covers the period 1983-2001 and contains wages by occupation for a large

sample of countries. Wages are reported as the average monthly wage rate of male workers in

constant dollars, which we convert into yearly PPP-adjusted wages using price indices from the

Penn World Tables 6.2. Instead, we need to aggregate occupational wages into series of skilled

and unskilled wages under the constraint that the number of occupations for which wage data are

available differ across countries for a given time period and for a given country across time. We

follow the procedure suggested by Chor (2001) to construct the two wage series, taking a fixed

set of seven skilled and seven unskilled occupations.30 For skilled and unskilled occupations we

separately perform the following procedure.31 We regress wages for occupation o in country c in

period t, wcto on the wages of all the other occupations in separate regressions to squeeze out the

common trend for these occupations for a given country: wcto = β1wcto′ + δco+uct0, and we obtain

predicted values as β̂1wcto′+ δ̂co. Subsequently, we average the predicted values of all regressions to

obtain an estimate of the wage series. Finally, we take averages of the data using one year windows

around 1985, 1990, 1995 and 2000 to maximize data availability.

Human capital stocks

Data on educational attainment of the population come from Barro and Lee (2000, 2011), supple-

mented with data by De la Fuente and Domenech (2002) for OECD countries. These data-sources

are the ones that have been used by Beine, Docquier and Rapoport (2008) to construct migration

rates by skill. Skilled workers are those with tertiary education (13 years and above), while all

30The 7 unskilled occupations selected were: thread and yarn spinners in the textiles industry (#25); sewing
machine operators in the manufacture of wearing apparel excluding footwear (#30); laborers in printing, publish-
ing and allied industries (#51); laborers in the manufacture of industrial chemicals and other chemical products
(#56/#59)13; laborers in the manufacture of machinery except electrical (#70); laborers in electric light and power
(#80); and laborers in construction (#90).14 These choices satisfied three criteria. First, the job scopes did not
require higher education. Second, the industries picked were found in most economies, ensuring wide geographical
coverage. These 7 occupations lie on the low end of the wage spectrum in the OWW: In countries that listed wages
for at least 80 of the 159 occupations during 1983-1998, the 7 occupations were in the lower one-third of the dis-
tribution of reported wages in at least 75% of country-year pairs, with one exception (#80). For skilled labor, the
7 occupations were: chemical engineers in the manufacture of industrial chemicals (#52); power distribution and
transmission engineers (#76); bank accountants (#129); computer programmers in the insurance industry (#133);
government executive officials in public administration (#139); mathematics teachers at the third (tertiary) level
(#145); and general physicians (#152). The skilled workers we focus on are professionals. The ’skilled’ wage is thus
a wage return to technical expertise that would require at least a secondary level of schooling. Certainly, these
7 occupations lie above the 75th percentile of the wage distribution for country-year pairs reporting at least 80
occupations during 1983-1998.

31For a more detailed explanation see Chor (2001).
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other workers are considered as unskilled for our purposes. This is the standard definition of skilled

workers in the brain drain literature and matches our definition of skilled wages quite closely. These

data are available in 5 year intervals and we use those for 1980, 1985, 1990, 1995, 2000 and 2005.

Migration rates

The source of the migration data by skill level is Beine, Docquier and Rapoport’s (2008) database

on migration to the OECD countries by sending country and skill level for the years 1990 and

2000. They construct migration rates by sending country by combining information on migrant

stocks in OECD countries by skill with data on educational attainment of the sending countries’

labor force.32 Migrants are defined as all working-age (25 and over) foreign-born individuals living

in an OECD country. Skilled migrants are those who have at least tertiary educational attainment

that has been acquired in their home countries. Migration rates are measured as stock variables.

Denoting Hit (Lit) as the stock of skilled (unskilled) residents and Hmit (Lmit) as the stock of

skilled (unskilled) migrants age 25 or over from country i at time t, emigration rates of the skilled

and unskilled are defined as sHit = Hmit
Hit+Hmit

and sLit = Lmit
Lit+Lmit

. More precisely, sjit measures

the fraction of agents of skill j ∈ {H,L} born in country i and living in an OECD country at time

t. Brain drain is the relative migration rate of skilled workers, defined as brain drainit = sHit/sLit.

Unemployment rates

Unemployment rates for skilled and unskilled workers have been constructed from the ILO Key

Indicators of the Labour Market database. This database provides information on employment

by educational attainment for a (strongly unbalanced) panel of countries. We have combined this

information with the data on the number of workers by educational attainment from Barro and

Lee (2000, 2011) and De la Fuente and Domenech (2002) to construct unemployment rates for

skilled and unskilled workers for 1980, 1985, 1990, 1995, 2000 and 2005.

Labor market institutions

Data on labor market institutions are from Aleksynska and Schindler (2011) and from the Fraser

Institute Freedom of the World, 2011 Database (Gwartney et al. (2011)). Aleksynska and Schindler

(2011) have constructed a database of labor market regulations during 1980-2005 for 91 countries

that contains information on unemployment insurance systems, minimum wages and employment

protection legislation using a common methodology. This data set is the most complete cross-

country panel of labor market institutions available. We use the variable ’replacement rate’, defined

as the gross replacement rate in the first year of unemployment, ’minimum wage’ defined as the

ratio of the minimum to the median wage, and ’firing cost’, which is an indicator that includes both

advance notice requirements and severance pay. As a robustness check, we also use the labor market

32Since most migration is to OECD countries, this is a good proxy for total migration rates.
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regulation index from the Fraser Institute Freedom of the World, 2011 Database. We multiply the

index with minus one, so that higher values correspond to more regulated labor markets.

Other data

We use additional control variables such as real PPP-GDP per capita levels, real PPP GDP growth

and openness, defined as (exports+imports)/GDP, from the Penn World Tables 6.2. We also use

educational spending as a fraction of GDP from the Word Development Indicators 2000 and 2011

and a number of country-specific variables from Beine et al. (2008), such as distance from the

OECD, an indicator of whether a country has been a colony of an OECD country after 1945, and

an indicator of whether a country has English or French as an official language.

List of countries used in wage regressions (Table 3)

ARG (1995-1995), AUS (1985-2000), AUT (1985-2000), BDI (1990), BEN (1985, 1990), BGD (1990,

1995), BGR (1990), BOL (1990-2000), BRB (1985-1995), BWA (1985), CAF (1990, 1995), CAN

(1985), CHL (1985), CHN (1990, 1995), COL (1990), CRI (1995, 2000), CYP (1985-2000), CZE

(1995,2000), DNK (1990), DOM (1995), DZA (1985, 1990), FIN (1985-1995), FJI (1985), GBR

(1990, 1995), GUY (2000), HND (1985-1995), HRV (1995), HUN (1995, 2000), IND (1990-2000),

ITA (1985-2000), JPN (1985), KOR (1985-2000), LKA (2000), MEX (1985, 2000), MLI (1985,

1990), MOZ (1990), MUS (1985-2000), MWI (2000), NIC (1995, 2000), NZL (1985, 1990), PER

(1985, 1995, 2000), PHL (1990, 1995), PNG (1995), POL (1995, 2000), PRT (1995, 2000), ROM

(1985-2000), RUS (1995, 2000), RWA (1985, 1990), SDN (1990), SGP (1985-2000), SLE (1995),

SVK (1995, 2000), SVN (1990, 1995), SWE (1985-1995), THA (1985-1995), TTO (1995-1995),

TUN (1985, 1995), URY (1985), USA (1990-2000), VEN (1985, 1990), ZMB (1990, 1995).

List of countries used in unemployment regressions (Tables 4, 5)

ARE (1995, 2005), ARG (1995-2005), ARM (1995-2005), AUS (1990-2005), AUT (1985-2005), BEL

(1995-2005), BGD (2000,2005), BGR (2000, 2005), BHR (2000, 2005), BLZ (1995, 2005), BOL

(2000), BRA (2005), BRB (1995, 2000), CAF (1990,1995), CAN (1980-2005), CHE (1995-2005),

CHL (2000, 2005), CRI (1990-2005), CUB (1990-2005), CYP (1985-1995, 2005), CZE (1995-2005),

DNK (1995-2005), DZA (1995), ESP (1980-2005), EST (1995-2005), FIN (1995-2005), FJI (2005),

FRA (2005), GBR (1990-2005), GER (2000, 2005), GRC (1995-2005), HRV (2000, 2005), HUN

(1995-2005), IDN (1985-2005), IND (1990-2005), IRL (1990, 1995, 2005), ISL (1995, 2000), ITA

(1995-2005), JPN (1990-2000), KGZ (1995-2005), KWT (1995-2005), LTU (1995-2005), LUX (2000,

2005), LVA (2005), MAR (1990-2005), MEX (1995-2005), MLT (1995, 2005), MNG (2000), MUS

(2005), MYS (1995-2005), NIC (1995-2005), NLD (1995-2005), NOR (2000, 2005), NZL (1990-

2005), PAK (1995-2005), PAN (1985, 2005), PER (2005), PHL (2000, 2005), POL (1995-2005),

PRT (1995-2005), ROU (1995-2005), RUS (1995-2005), RWA (2000), SAU (2000), SGP (1985-

1995), SVK (1995-2005), SVN (1995-2005), SWE (1990, 2005), TJK (1990-2005), TTO (1995,
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2000), TUN (2000, 2005), TUR (1995-2005), UKR (1995-2005), URY (2005), ZAF (2000, 2005).

List of countries used in migration regressions (1990, 2000), (Table 6)

ARG, AUS, AUT, BEL, BGD, BGR, BOL, BRA, BRB, CAN, CHE, CHL, CHN, CMR, COG,

COL, CRI, CUB, CYP, DNK, DOM, DZA, ECU, EGY, ESP, FIN, FJI, FRA, GBR, GHA, GRC,

GTM, GUY, HKG, HND, HTI, HUN, IDN, IND, IRN, IRQ, ISL, ISR, ITA, JAM, JOR, JPN,

KEN, KOR, KWT, LBR, LKA, LSO, MEX, MLI, MLT, MWI, MYS, NER, NIC, NLD, NOR,

NZL, PAK, PAN, PER, PHL, PNG, POL, PRT, PRY, ROM, SDN, SEN, SGP, SLE, SLV, SWE,

SYR, TGO, THA, TTO, TUN, TUR, TWN, UGA, URY, USA, VEN, ZAF, ZAR, ZMB.

List of countries used in model simulations (1990, 2000), (Table 7)

Same as in migration regressions.
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Tables and Figures

Figure 1: Skill ratio and relative unemployment.

Note: The figure shows the simple correlation between the log relative unemployment rate of skilled and the log skill
ratio. The regression coefficient of log skill ratio is -0.46 (robust SE: 0.10), with R-squared of 0.20. Data are for an
unbalanced panel of 75 countries in 5-year intervals from 1980-2005.

Figure 2: Change in skill ratio and change in relative unemployment.

Note: The figure shows the simple correlation between the log change of relative unemployment rate of skilled and
the log change of skill ratio. The regression coefficient of log skill ratio is -0.86 (robust SE: 0.20), with R-squared of
0.13. Data are for an unbalanced panel of 75 countries in 5-year intervals from 1980-2005.
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Figure 3: Skill ratio and brain drain.

Note: The figure shows the simple correlation between the log relative migration rate of skilled (brain drain) and
the log skill ratio. The regression coefficient of log skill ratio is -0.796, (robust SE: 0.06), with R-squared of 0.63.
Data are for a sample of 92 countries for 1990 and 2000.

Figure 4: Change in skill ratio and change in brain drain.

Note: The figure shows the simple correlation between the log change of the relative migration rate of skilled (brain
drain) and the log change of skill ratio. The regression coefficient of log skill ratio is -0.28, (robust SE: 0.13), with
R-squared of 0.04. Data are for a sample of 92 countries for 1990 and 2000.
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Figure 5: Labor market, exogenous technology

Note: The figure depicts the relationship between the skill premium wH/wL and the relative em-
ployment rate xH/xL according to 1) relative matching and 2) relative labor demand. If technology
is exogenous (or, if technology is skill-biased but ε < 2), then the labor demand curve is downward-
sloping. Then, an increase in the skill ratio H/L leads to an increase in the relative employment
of skilled, HE/LE - compare (19) - but a decrease in the relative employment rate and the skill
premium via a downward-shift of the labor demand curve (movement from point A to point B) -
compare (20) and (21).
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Table 1: Baseline choice of parameters

Parameter wOECD
H wOECD

L xOECD
H xOECD

H aH aL µ

Value 0.37 0.15 0.96 0.95 0.38 0.16 1.41

Parameter Z L α σ cH cL ε

Value 1.96 10 1.17 4 1.62 3.45 2.25

Note: The baseline parameters are taken from the literature as described in section 3.1. Migration costs
are chosen to match observed migration rates for the average developing country in our sample.

Table 2: Simulation of the brain drain (sH/sL) depending on the skill ratio

H/L 0.01 0.05 0.10 0.20 0.50 1

Exogenous technology 6.53 7 7.11 7.18 7.26 7.3
Endogenous technology 7.21 7 6.81 6.55 6.2 6.13

Note: In the case of exogenous technology, AH and AL were chosen such that for H/L=0.05 emigration
rates (sH , sL) are exactly the same as in the case of endogenous technology.
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Table 4: Skill ratio and relative unemployment rates
Dependent variable: relative unemployment rate

(1) (2) (3) (4) (5) (6)
Skill ratio -0.457*** -0.472*** -0.470*** -0.691*** -0.487* -2.709

(0.107) (0.132) (0.149) (0.234) (0.278) ( 1.815)
GDP per capita -0.154 -0.195 -0.975 1.337

(0.120) (0.122) (0.929) ( 1.849)
GDP growth -0.126 -0.142 1.249 -3.616

(0.719) (0.761) (0.949) (2.303)
Openness -0.188 -0.16 0.346 -1.064

(0.207) (0.231) (0.279) (1.367)
Time Fixed Effects YES YES YES YES YES YES

Country Fixed Effects NO NO NO YES YES YES
Cluster Country Country Country Country Country Country

Estimator OLS OLS IV OLS OLS IV
F-statistic first stage 413.140 6.145

Sargan J-statistic (P-Value) 0.9795 0.767
Observations 200 117 103 200 117 50

Countries 75 58 54 75 58 37
R-squared 0.252 0.399 0.375 0.224 0.438 0.114

Note: Dependent variable is the (log) relative unemployment rate of skilled workers. Explanatory variables
are in logs and include levels of skill ratios, the level of GDP per capita, the growth rate of GDP and
openness. In columns (3) and (6), we instrument for skill ratios using 5-year-lagged skill ratios, and public
education expenditure as instruments. In column (6) the regression is estimated in first differences. The
column ’F-statistic’ refers to the Kleibergen-Paap test for weak instruments. In the column ’Sargan J-
statistic’, we report the P-Value of the Sargan test for the validity of the over-identifying restrictions.
Unemployment rates by educational attainment are constructed using data from ILO and Barro and Lee
(2000, 2011). Skill ratios are constructed from Barro and Lee (2000, 2011) and are defined as the fraction
of people with tertiary education in the working-age population over 25 years. Other data are from Penn
World Tables, except public education expenditure, which comes from the World Development Indicators.
The data set is an unbalanced panel in 5-year-intervals from 1980-2005. All standard errors are clustered
at the country level.
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Table 6: Skill ratio and brain drain
Dependent variable: brain drain

(1) (2) (3) (4) (5) (6) (7) (8)
Lagged Skill ratio -0.764*** -0.564*** -0.279** -0.345* 0.268 0.262

(0.056) (0.101) (0.136) (0.186) (0.389) (0.478)
Skill Ratio -0.662*** -1.799**

(0.108) (0.869)
AH/AL -0.344** -0.263*

(0.154) (0.155)
GDP per capita -0.0419 0.00131 0.436* 0.473* -0.0406

(0.140) (0.156) (0.232) (0.255) (0.249)
GDP growth -0.212 -0.365 -0.459*** -0.616*** -0.153

(0.335) (0.370) (0.123) (0.191) (0.251)
Openness -0.244* -0.228* 0.0763 -0.154 0.421

(0.133) (0.123) (0.133) (0.169) (0.312)
Time Fixed Effects YES YES YES YES YES YES YES YES

Country Fixed Effects NO NO NO YES YES YES YES YES
Migration Cost Controls NO YES YES NO NO NO NO NO

Cluster Country Country Country Country Country Country Country Country
Estimator OLS OLS IV OLS OLS IV OLS OLS

F-statistic first stage 405.155 2.407
Sargan J-statistic (P-Value) 0.2806 0.8056

Observations 184 142 119 184 142 53 67 67
Countries 92 71 59 92 71 53 48 48
R-squared 0.625 0.715 0.758 0.311 0.412 0.383 0.496

Note: Dependent variable is the (log) skilled relative to unskilled migration rate from the source country
to the OECD. Explanatory variables are in logs and include levels of skill ratios or 10-year-lagged skill
ratios, the level of GDP per capita, the growth rate of GDP and openness. Columns (2) and (3) include
migration cost proxies – distance to the OECD, dummies for colony of the OECD, English and French
as official languages (coefficient not reported). In columns (3) and (6), we instrument for skill ratios
using 10-year-lagged skill ratios, and public education expenditure as instruments. In column (6) the
regression is estimated in first differences. The column ’F-statistic’ refers to the Kleibergen-Paap test for
weak instruments. In the column ’Sargan J-statistic’, we report the P-Value of the Sargan test for the
validity of the over-identifying restrictions. In columns (7) and (8), we control for the relative productivity
of skill, AH/AL, constructed from equation (48), assuming ε = 2.25. Migration data for 1990 and 2000
are from Beine et al. (2008), skill ratios are constructed from Barro and Lee (2000, 2011) and are defined
as the fraction of people with tertiary education in the working-age population over 25 years. Other data
are from Penn World Tables, except migration cost proxies, which come from Beine et al. (2008), and
public education expenditure, which comes from the World Development Indicators. All standard errors
are clustered at the country level.

51



T
a
b
le

7
:

M
o
d

el
si

m
u

la
ti

o
n
s

ve
rs

u
s

d
a
ta

C
o
effi

ci
en

t
fr

o
m

re
g
re

ss
io

n
o
f,

o
n

u
H
/
u
L
,H
/
L

s H
/
s L
,H
/
L

w
H
/
w
L
,H
/
L

s H
/
s L
,u
H
/
u
L

∆
(s
H
/
s L

),
∆

(H
/
L

)
A
H
/A

L
,H
/
L

,
A
H
/A

L
,H
/
L

,
A
H
/A

L
,H
/
L

,
A
H
/A

L
,H
/
L

,
ε

=
1
.7

5
ε

=
2

ε
=

2
.2

5
ε

=
2
.5

D
a
ta

-0
.2
1
2
*
*
*

-0
.8
1
9
*
*
*

-0
.1
6
3
*
*
*

0
.2
6
2
*
*
*

-0
.5
4
6
*
*
*

0
.9
8
8
*
*
*

0
.7
0
0
*
*
*

0
.4
1
5
*
*
*

0
.4
1
3
*
*
*

ε
=

1
.7

5
,α

=
2
.7

-0
.1

2
9

-0
.1

4
1
*

-0
.2

2
8
*
*

-0
.0

5
3

-0
.0

5
1

-0
.2

1
7
*
*
*

ε
=

2
,α

=
2
.7

-0
.1

6
7
*

-0
.2

4
7
*
*
*

0
0
.2

4
3

-0
.0

9
7

0
ε

=
2
.2

5
,α

=
2
.7

-0
.1

7
3

-0
.3

4
4
*
*
*

0
.2

7
6
*
*
*

0
.6

5
6
*
*
*

-0
.0

5
7

0
.2

5
7
*
*
*

ε
=

2
.5
,α

=
2
.7

-0
.2

7
3
*
*
*

-0
.4

8
8
*
*
*

0
.6

1
5
*
*
*

0
.5

9
3
*
*
*

-0
.2

7
1

0
.5

6
6
*
*
*

ε
=

1
.7

5
,α

=
1
.1

7
0
.1

0
7
*
*
*

’-
0
.2

7
9
*
*
*

-0
.2

0
6
*
*
*

-0
.0

9
6
*
*

0
.5

2
3
*
*
*

-0
.2

1
2
*
*
*

ε
=

2
,α

=
1
.1

7
-0

.0
4
1

-0
.3

5
9
*
*
*

0
0
.0

9
3

0
.0

1
3

0
ε

=
2
.2

5
,α

=
1
.1

7
-0
.2
6
0
*
*

-0
.4
2
8
*
*
*

0
.3
1
9
*
*
*

0
.1
4
8

-0
.2
0
0
*
*

0
.3
0
4
*
*
*

ε
=

2
.5
,α

=
1
.1

7
-0

.6
7
5
*
*
*

-0
.6

0
9
*
*
*

0
.8

7
4
*
*
*

0
.0

8
3

0
.0

1
0

0
.7

9
3
*
*
*

ε
=

1
.7

5
,α

=
0
.8

5
0
.1

5
7
*
*
*

-0
.3

2
6
*
*
*

-0
.1

9
4
*
*
*

-0
.2

6
9
*
*
*

0
.1

9
6
*

*
*

-0
.2

0
2
*
*
*

ε
=

2
,α

=
0
.8

5
-0

.0
1
8

-0
.3

5
5
*
*
*

0
0
.0

0
6

0
.0

0
3

0
ε

=
2
.2

5
,α

=
0
.8

5
-0

.3
6
4
*
*
*

-0
.3

8
2
*
*
*

0
.3

5
5
*
*
*

0
.1

6
9

-0
.0

7
0

0
.3

3
9
*
*
*

ε
=

2
.5
,α

=
0
.8

5
-0

.8
3
1
*
*
*

-0
.6

7
0
*
*
*

1
.2

1
5
*
*
*

-0
.0

0
5

-0
.3

1
0

1
.0

4
3
*
*
*

N
o
te

:
T

h
e

ta
b
le

sh
ow

s
re

g
re

ss
io

n
co

effi
ci

en
ts

o
f

re
g
re

ss
in

g
th

e
fi
rs

t
va

ri
a
b
le

in
th

e
co

lu
m

n
h
ea

d
er

o
n

th
e

se
co

n
d

o
n
e.

T
h
e

fi
rs

t
ro

w
p
re

se
n
ts

th
e

re
g
re

ss
io

n
co

effi
ci

en
ts

o
b
ta

in
ed

fr
o
m

th
e

d
a
ta

.
R

ow
s

(2
)-

(1
3
)

p
re

se
n
t

re
g
re

ss
io

n
co

effi
ci

en
ts

o
b
ta

in
ed

fr
o
m

re
g
re

ss
io

n
s

u
si

n
g

d
a
ta

g
en

er
a
te

d
b
y

th
e

m
o
d
el

fo
r

d
iff

er
en

t
va

lu
es

o
f

th
e

el
a
st

ic
it

y
o
f

su
b
st

it
u
ti

o
n

b
et

w
ee

n
sk

il
le

d
a
n
d

u
n
sk

il
le

d
w

o
rk

er
s

(ε
)

a
n
d

m
a
tc

h
in

g
el

a
st

ic
it

ie
s

(α
).

R
ow

(8
)

is
o
u
r

b
a
se

li
n
e

ca
li
b
ra

ti
o
n
.

S
im

u
la

ti
o
n
s

fo
r

co
u
n
tr

ie
s

fo
r

w
h
ic

h
m

ig
ra

ti
o
n

d
a
ta

a
re

av
a
il
a
b
le

.
S
im

u
la

ti
o
n
s

a
re

fo
r

th
e

y
ea

rs
1
9
9
0

a
n
d

2
0
0
0
.

∆
re

fe
rs

to
ch

a
n
g
es

b
et

w
ee

n
1
9
9
0

a
n
d

2
0
0
0
.

*
*
*

d
en

o
te

s
si

g
n
ifi

ca
n
ce

a
t

th
e

o
n
e

p
er

ce
n
t

le
v
el

.

52


	89Fadinger_Mayr
	Schmutzblatt
	48.fadinger.bdrain_fiw

