
FIW – Working Paper

The FIW - Research Centre International Economics (https://www.fiw.ac.at/) is a cooperation between the

Vienna University of Economics and Business (WU), the University Vienna, the Johannes Kepler University Linz,

the University of Innsbruck, WIFO, wiiw. FIW is supported by the Austrian Federal Ministries BMBFW and BMAW.

China’s Manufacturing Pollution,

Environmental Regulation and Trade

Dan Xie1

Real manufacturing output increased rapidly in China from 1998 to 2012 while sulfur dioxide

(SO2) pollution emissions grew at a much lower rate. To study the reasons for this, I focus

on the contributions of environmental policy, trade liberalization, and other factors linked

to China’s development process. Using China’s entry into the World Trade Organization

and the 11th Five-Year Plan as policy shocks, the difference-in-differences analyses show

that these policies effectively reduced firm-level pollution intensity. The change in pollution

is primarily driven by within-sector firm heterogeneities rather than industry structural

change toward less polluting sectors. Finally, the counterfactual analysis based on a

quantitative model reveals that environmental regulations play a major role in reducing

pollution and the implicit pollution tax faced by firms grew substantially over the period. In

addition, tariff cuts due to trade liberalization reduce variable costs of trade and allow firms

to abate pollution more.

Keywords: Pollution emission, Environmental regulation, International trade, China.

JEL classification: F18, F68, L60, Q56, Q58

1 Paris School of Economics, E-mail: dan.xie@psemail.eu

Abstract

The author

                                           FIW Working Paper N° 198

July 2024



China’s Manufacturing Pollution,

Environmental Regulation and Trade ∗

Dan Xie
Paris School of Economics

March 2024

Abstract: Real manufacturing output increased rapidly in China from 1998 to 2012 while
sulfur dioxide (SO2) pollution emissions grew at a much lower rate. To study the reasons for this,
I focus on the contributions of environmental policy, trade liberalization, and other factors linked
to China’s development process. Using China’s entry into the World Trade Organization and
the 11th Five-Year Plan as policy shocks, the difference-in-differences analyses show that these
policies effectively reduced firm-level pollution intensity. The change in pollution is primarily
driven by within-sector firm heterogeneities rather than industry structural change toward less
polluting sectors. Finally, the counterfactual analysis based on a quantitative model reveals that
environmental regulations play a major role in reducing pollution and the implicit pollution
tax faced by firms grew substantially over the period. In addition, tariff cuts due to trade
liberalization reduce variable costs of trade and allow firms to abate pollution more.
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1 Introduction

The first decade of the 21st century witnessed rapid growth of real output in China. In Figure
1, the solid red line represents the aggregate real output of manufacturing industries at the
national level, which grew near five times from 1998 to 2012. By comparison, the aggregate
sulfur dioxide (SO2) emission in green dashed line grew at a much lower pace and hardly doubled
during the same period. As a result, the pollution intensity (SO2 emission per unit of output)
in the blue short-dashed line scaled by the left axis, dropped by around 60%.1

∗Acknowledgment: I am indebted to Alessandra Bonfiglioli, Gino Gancia and Tom Schmitz for their super-
vision on this project. I also thank helpful advice from Giovanni Facchini, Thomas Sampson, participants of
internal seminars at QMUL, the discussion of Alejandro Graziano and comments from Teresa Fort and partic-
ipants at the 20th Annual GEP/CEPR Postgraduate Conference, the OECD seminar series for policy insights,
the Workshop on the Impact of Global Trade Shocks at the University of Luxembourg, the discussion of Philipp
Ludwig at the 4th QMUL Economics and Finance Workshop, the discussion of François Libois and feedback from
the 18th Doctorissimes, comments from the trade group at LMU Munich and CESifo, the PSE-CEPR Policy
Forum, the EEA-ESEM 2022, and the SAEe 2022, the RES and SES Annual Conference 2023, the 10th Warwick
PhD Conference, the 2nd Newcastle Economics Research and Development (NERD) Conference, the 2nd Annual
Southern PhD Economics Conference (ASPEC) to improve the previous draft. All remaining errors are my own.

1The emission intensity here refers to the revenue emission intensity rather than physical emission intensity,
following the literature (see e.g. Rodrigue et al., 2022a). The production data do not include quantity information
so I do not directly observe physical emission intensity. However, I can combine production data with trade data
where there are export value and quantity, and impute export-related emissions, assuming that emission is
proportional to production. The export quantity and value are plotted in Figure A.1a. The revenue versus
physical emission intensities are shown in Figure A.1b. The magnitudes by the end of the period are not far from
Figure 1.

1



Figure 1. SO2 emission and real output

Notes: The industrial output and 2-digit deflators come from China Statistical Yearbooks.2 Firm-level emissions

come from the Environmental Statistics Database. The trends of other pollutants show similar patterns and are

summarized in Figure A.3.

This paper investigates the reasons behind the different patterns of output and pollution
in Figure 1. There are several possible explanations. China’s rapid output growth led to more
pollution, and China’s participation in world trade also contributed to this growth. However,
the growth of the economy, accompanied by an increase in productivity, may reduce pollution
intensity, so that firms can produce the same output with less input and pollution. Meanwhile,
the industry structure changed, which may contribute to the pollution levels. During the same
period, environmental regulations took place to tackle major air and water pollutants, which
played a significant role in reducing pollution.

The main focus of this paper is the emissions of SO2, a pollutant that has been studied
frequently in the literature. SO2 is one of the most important air pollutants and is common
in cities. It is mainly produced by coal burning, which is used to produce more than 60% of
electricity in China by 2020, according to the State Council. There are detrimental effects of
SO2 to the environment since it is the primary cause of acid rain, which harms plants, buildings
and can lead to respiratory diseases. The more concentrated is the pollutant, the more harmful
it is. Therefore, it is very much relevant that I study the pollution level and the pollution
intensity of SO2 in this paper. The SO2 emission increased quickly in China after 2002, from 20
million tons per year to 25.9 million tons in 2006, according to the Ministry of Environmental
Protection (MEP) of China. The amount was even higher than all OECD countries combined.
Therefore, it was an urgent issue to curb the rapid growth in SO2 emission in China. Another
reason to study SO2 is that the regulations set clear targets to reduce SO2 and one can observe
the effectiveness of the environmental policy. The data on SO2 are also recorded with wider
coverage of firms and more detailed than other pollutants. Extension to other pollutants in
comparison to SO2 is carried out in later sections.

Previous research in this field focused mainly on industry-level data and detailed firm-level

2I can alternatively use 4-digit industry deflators by extending the output deflators from Brandt et al. (2017)
to 2010. The threshold of firm annual sales increased from 5 million RMB to 11 million RMB in 2011, making
the sample not compatible with previous years, so I do not extend the deflators after 2010. Figure A.2 shows
that the real output deflated at 4-digit industries closely follows the trend deflated at 2-digit industries.
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data, especially on developing countries are relatively scarce (Jayachandran, 2022). This paper
is among the first to use firm-level pollution data of China to explore the drivers of industrial
pollution emissions. First, it provides evidence that large firms pollute more but firms that im-
port and export more are less pollution-intensive. Firms with higher total factor productivity
(TFP), which implies better technology, are associated with less pollution emissions. Moreover,
using China’s entry to the WTO and the environmental regulation during the 11th Five-Year
Plan as policy shocks, with difference-in-differences (DiD) strategies, I show that trade liber-
alization and pollution policy are effective in reducing the emission intensity of firms across
industries and provinces, respectively.

One reason for the change in pollution levels might be industry structural change. Clean
industries may grow faster than dirty industries so that total pollution increased more slowly
than output. To assess the role of industry structure, I decompose the total pollution level into
scale, composition, and technique effects. The scale effect measures the change in pollution due
to the growth of the economy, the composition effect reflects the change in pollution due to
industry structure, and the technique effect is the residual effect due to industry-level pollution
intensity. Among the three components, the scale effect drives up total pollution level but the
technique effect significantly reduces it. The composition effect is very small, indicating that
industry structural transformation contributes marginally to total pollution. Further firm-level
decomposition reveals that the reduction in pollution intensity is mainly due to reallocation
towards the less pollution-heavy firms within industries.

The decomposition exercises together with the regressions provide evidence on the chan-
nels that drive pollution emissions such as international trade, environmental regulation, and
productivity. However, they are less informative about the overall contributions of primitive
economic forces, neither do they shed light on the counterfactual effects of trade and environ-
mental policies on pollution. To evaluate the overall effect of different channels under a general
equilibrium framework, I use the quantitative model from Shapiro and Walker (2018) to study
China’s SO2 pollution emissions. The model combines the classic international trade model
(Melitz, 2003) with insights from environmental economics (Copeland and Taylor, 2003), and
can account for various general equilibrium forces in counterfactual scenarios. It features hetero-
geneous firms that choose pollution abatement as a proportion of production costs, depending
on environmental regulation, productivity and trade costs. One can derive a market-equivalent
implicit pollution tax which is otherwise not directly observable from the data to capture the
stringency of pollution policies. Not much has been done to structurally estimate the contribu-
tion of endogenous forces to pollution emission, especially in evaluating environmental policy
in developing countries where the regulations are thought to be weaker. This paper contributes
to the literature in this aspect through a quantitative model and matched data of pollution,
production, and trade on Chinese firms.

The main results suggest that tighter environmental regulation would reduce around 50%
of SO2 pollution emissions according to the counterfactual analysis. The back-of-the-envelope
estimate of the economic gain due to SO2 emission reduction is 127.68 billion RMB in 2005,
accounting for 0.68% of the annual GDP. The counterfactual wage would only decrease by 0.4%,
which is relatively small. On the other hand, should there be no environmental regulation, the
counterfactual pollution emissions of manufacturing industries would be 300% of the initial level
by 2012, compared to the actual level of 162%. Although the competitiveness of Chinese firms
in the international market would push up the pollution level through the scale effect, tariff
cuts on Chinese exports due to trade liberalization imply a smaller portion of a firm’s output
must be paid in order to export, which leads to less pollution. The measured productivity
only moderately decreases pollution level, which would be confounded with other forces as the
technique effect in the conventional decomposition exercise. This indicates that more productive
firms reduce more pollution because they have better export opportunities and larger domestic
sales which allow them to better bear the abatement costs, rather than because of better
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technology alone.
The remainder of the paper is structured as follows. Section 2 reviews the relevant literature.

Section 3 introduces the data used in the analysis and briefly explains the environmental policy
in China before showing firm-level regression results in Section 4. I then do the decomposition
exercises in Section 5 to explore the patterns of pollution emission within and across industries.
Section 6 introduces the theoretical model, estimates the parameters and recovers historical
values for counterfactual analysis in Section 7. Section 8 concludes the paper.

2 Literature

This paper is related to several strands of the literature. One topic closely related to pollu-
tion emissions is the role of international trade and technology. Many papers take free trade
agreements as policy shocks and study their effects on pollution. The policies that attract most
attentions are the North America Free Trade Agreement (NAFTA) and China’s entry into the
World Trade Organization (WTO). For example, Cherniwchan (2017) estimated the effects of
NAFTA on emissions from manufacturing plants in the US and show that two-thirds of par-
ticulate matter (PM10) and sulfur dioxide (SO2) emission reductions between 1994 and 1998
can be attributed to trade liberalization. Richter and Schiersch (2017) find a negative relation
between export intensity and CO2 emission intensity in Germany with a consistent production
function framework. In another case, Gutiérrez and Teshima (2018) use plant-level data in
Mexico and find that lower tariffs and import competition increase energy efficiency and thus
reduce emissions. In India, foreign demand growth led to more carbon dioxide (CO2) emissions
but 40% was mitigated by reduced emission intensity (Barrows and Ollivier, 2021).

In the case of China, the WTO accession provides an ideal environment for difference-
in-differences (DiD) analysis. Evidence shows that tariff cuts reduce firm-level SO2 emission
intensity through increased labor resources for environmental protection or higher abatement
efforts (Cui et al., 2020; Pei et al., 2021). In addition, international trade allows firms to spread
fixed costs of abatement investment across more units, increases firm productivity and thus
reduces emission intensity, yet the overall effect on total emissions is not conclusive (Forslid
et al., 2018; He and Huang, 2022; Rodrigue et al., 2022b; Chen et al., 2023). In this paper, I
examine both total pollution and pollution intensity, and combine production, trade as well as
pollution information at the firm-level. As pointed out by Cherniwchan and Taylor (2022), the
long-run impact of trade on pollution remains an open question. Unlike Rodrigue et al. (2022b)
who focus on the first few years of the WTO accession, I extend the analysis beyond the initial
period until 2012, when the environmental regulations also started to affect pollution emissions,
while combining detailed firm-level data in regressions and a quantitative model.

Another line of literature is focused on environmental regulations. The US enforced the
Clean Air Act in the 1990s (Shapiro and Walker, 2018) and the Clean Water Act since 1972
(Keiser and Shapiro, 2018), which substantially abated air and water pollution nationwide. In
China, the most frequently mentioned environmental regulation policies were introduced by
the 11th Five-Year Plan, covering the period 2006-2010, including both air and water pollu-
tants. Local regulations are effective when supervised by the central government, as shown in
Kahn et al. (2015). However, the pollution regulation mandates may cause some firms to relo-
cate or shift production to provinces where the regulations are less stringent (Wu et al., 2017;
Chen et al., 2021). He et al. (2020) find evidence that the policy led to lower pollution levels
upstream of a monitoring station, rather than downstream. Without misallocation, pollution
would decline by 20% since more large, low-polluting firms survive (Qi et al., 2021). However,
if environmental regulation policies loosen, the progress may be reversed (see Burgess et al.,
2019 for Brazil). The evidence leads to the conclusion that environmental regulations are highly
effective in most conditions and therefore are vital to the reduction of pollution emissions. How-
ever, it is important to take into account the general equilibrium effects in order to evaluate the
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environmental policies. In this paper, I study environmental regulations in China, in particular,
the 11th Five-Year Plan on SO2 pollution reduction. With a structural model, I show that the
policy is not only effective but quantitatively could reduce around half of total emission level.

There is a long history in the literature on the decomposition exercise to disentangle within
and across industry forces that drive the level of pollution emissions (Copeland and Taylor,
1994; Grossman and Krueger, 1995; Antweiler et al., 2001; Levinson, 2009; Rodrigue et al.,
2022a, etc.). Specifically, the total pollution emission level of an economy can be decomposed
into scale, composition and technique effects at the sector-level. In addition, I decompose the
pollution intensity at the firm-level, taking into consideration the entry and exit of firms (Melitz
and Polanec, 2015). The evidence suggest that within-industry and across-firm production
reallocation is a major force that affects pollution level, rather than industry structure change,
consistent with the finding of Dong and Yu (2021). The result is different from the context of
Germany, who is also a major country in international trade. For example, Rottner and von
Graevenitz (2022) find that carbon emission from German manufacturing increased between
2005 and 2017 due to production scale, but there was a clean-up due to a shift towards a
cleaner product composition from 2011 onwards.

Recently, there is a small strand of literature using quantitative models to tell apart the
contribution of each potential channel to the total level of pollution emissions (Shapiro and
Walker, 2018; Shapiro, 2020; Alvarez and Rossi-Hansberg, 2021) or to evaluate regulations
quantitatively (Duflo et al., 2018; Blundell et al., 2020; Chen et al., 2021). Among them, Shapiro
and Walker (2018) developed a two-country, multi-sector model featuring heterogeneous firms
in a monopolistic competitive market based on workhorse models from international (Melitz,
2003) and environmental (Copeland and Taylor, 2003) literature. It is also the main quantitative
reference of this paper, which applies the model to the Chinese context instead of the original
US scenario. Their main finding is that the environmental regulation, i.e. the Clean Air Act,
accounts for most of the emission reductions rather than productivity and trade between 1990
and 2008 in the US. Further exploration showed that import tariffs and non-tariff barriers are
much lower on dirty than on clean industries due to greater protection of downstream industries
which are relatively clean (Shapiro, 2020). In this paper, I use the quantitative model and study
various endogenous factors including China’s environmental regulation reform, as well as foreign
and domestic market competitiveness. In addition, I extend the analysis and emphasize factors
such as variable trade cost and productivity and explore their impacts on pollution emissions.
Similar application of the model has been done on German carbon prices (Rottner et al., 2023),
where the authors find the implicit carbon price on emission decreased from 2005 to 2019 in
most manufacturing sectors.

Finally, there is a growing literature on the labor market outcomes due to pollution, with
a focus on developing economies (Greenstone and Hanna, 2014; Arceo et al., 2016; Ebenstein
et al., 2017; Barwick et al., 2018; Bombardini and Li, 2020). For instance, Bombardini and
Li (2020) showed that the increase in pollution due to export expansion and output growth
can raise infant mortality, but the increase in local incomes may instead reduce mortality. Air
pollution level is also related to worker health and productivity (Chang et al., 2019), absenteeism
and firm sales (Leroutier and Ollivier, 2023), earnings (Wan and Zhang, 2023), job reallocation
(Li et al., 2023), and worker migration (Khanna et al., 2021). The analysis of the current paper
is mainly on the level of pollution and pollution intensity, which can lead to the potential effects
on health and labor market consequences, although they are not the main focus of this paper.
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3 Data and policy background

3.1 Data

The firm-level data in the paper are sourced from the EPS (Economy Prediction System) China
micro-economy database which has recently become available. Three sub-datasets at the firm-
level are used. The first is the Environmental Statistics Database (ESD) provided by the
Ministry of Environment Protection (MEP) of China. The second is the Annual Survey of
Industrial Firms (ASIF) conducted by the National Bureau of Statistics (NBS). The third is
the import and export data from the customs record. The advantage of the EPS data is that
firms are matched by name, location and registration number so that I can combine production,
pollution and trade information altogether at the firm-level. To take the common coverage
among the datasets, I focus on the period 2000 to 2012. The time span of the study covers
the fast development after China entered the WTO in 2001 and also the implementation of the
11th Five-Year Plan (2006-2010) when the government regulated pollution with specific caps for
each province, specifically on sulfur dioxide (SO2) for air pollution and chemical oxygen demand
(COD) for water pollution. The majority of the firms are concentrated in the manufacturing
sectors. All observations are at firm-level with 4-digit China Industry Classification (CIC) at
each prefecture.

The reliability of the ESD data is a potential concern, since firms may misreport their
emission levels. The ESD is by now the most comprehensive database available on firm-level
pollution for China cross-verified by previous studies (Cui et al., 2020; Rodrigue et al., 2022b).
The survey is conducted annually on firms that account for 85% of total emission in a prefecture.
To reduce the incentive of misreporting, the Environmental Protection Law explicitly states that
the survey cannot be used as a reference to punish or regulate polluting firms (He et al., 2020).
In addition, the MEP carries out random monitoring checks and anonymous field inspections to
verify the accuracy of the information reported. Rodrigue et al. (2022b) among others provide
checks on the data by aggregating firm-level SO2 across time and space, and compare with the
annual reports to show that the dataset captures the majority of total emissions and is in line
with the official statistics. They also crosscheck with the US satellite data and find no significant
evidence of systematic reporting bias. The pollutants recorded include sulfur dioxide (SO2),
nitrogen oxides (NOx) and smoke dust (close to particulate matter) for air pollution, chemical
oxygen demand (COD), ammonia nitrogen (NH3-N) and waste water for water pollution.

The ASIF data are frequently used in studies related to China’s firm-level performance,
which report the major production indicators in the financial statements. The data include all
state-owned enterprises (SOEs) and private firms with annual sales above 5 million RMB.3 With
the information provided , I can estimate firm-level total factor productivity (TFP). Finally,
the customs data record the import and export of firms with the quantity and value of each
destination, and can be combined with the emission and production data to assess the effect of
trade on pollution.

The geographic coverage of the datasets is plotted in Figure A.4. Though the number
of firm-level observations shrinks progressively as more datasets are combined, the pattern
remains consistent.4 The eastern and coastal areas are more developed in general and have more
firms included. Firms also concentrate around the four cities under direct central governance
(Beijing, Shanghai, Tianjin, and Chongqing). In terms of industry distribution for SO2, the
manufacturing sector accounts for 53% of total emissions in the ESD dataset, followed by

3Since 2007, the ASIF data do not cover firms with annual sales below 5 million RMB. The threshold was
further lifted to 20 million RMB in 2011. The equivalent US dollar value is 0.66 million in 2007, and 3 million
in 2011, according to the average exchange rate (7.6 RMB per USD in 2007 and 6.5 RMB per USD in 2011)
reported by the Central Bank of China.

4The total number of manufacturing firms in the pollution dataset between 2000 and 2012 is 245479, and
shrinks to 130282 when merged with the ASIF dataset, which is further reduced to 38336 when again merged
with the Customs dataset. Most firms appear in multiple years in the observations.
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electricity, heat, gas and water production and supply, which cover 42% of total emissions in
the sample period. Among manufacturing industries, the most pollution-heavy industries that
account for more than 1% of total emissions of SO2 are listed in Table B.1. The most “dirty”
industries are metal smelting and processing.

At the aggregate level, I obtain the country-industry production and trade data from the
World Input-Output Database (WIOD) for the period of 2000-2012 in the structural model
estimations. Here I abstract from non-manufacturing industries and the industries are converted
from ISIC Revision 4 to CIC 2017 at 2-digit level according to the concordance table by China’s
National Bureau of Statistics. Additional industry and province output and emission data come
from China Statistical Yearbooks and China Environmental Statistical Yearbooks.

3.2 China’s environmental policy

The main environmental policy during the sample period is China’s 11th Five-Year Plan from
2006 to 2010. The policy plays an important role in controlling pollution emissions because
there was a specific reduction target of 10% nationwide on pollutants such as sulfur dioxide
(SO2) and chemical oxygen demand (COD). The total target was in turn assigned to each
province as a pollution quota. The evaluation of implementation was directly linked to local
government performance and the promotion of local leaders. By 2010, most provinces achieved
or even exceeded their targets (Shi and Xu, 2018). Local governments and firms have strong
political incentives to comply with the environmental regulation policy and reduce the pollution
emissions to the regional cap. Although during the 10th Five-Year Plan, there was also an overall
pollution reduction target of 10%, not all provinces received a reduction quota, and the outcome
was not directly linked to chances of political promotion. Therefore, the 10th Five-Year Plan
was not as effective. By the end of the period, the total pollution emission of SO2 even increased
by 28% according to the China Environmental Statistical Yearbooks. After the 11th Five-Year
Plan, there was the 12th Five-Year Plan, with further reduction goals. However, later rounds
of Five-Year plans are beyond the period of observation with the current data and I leave the
analysis for future updates. In addition to the 11th Five-Year Plan, there are other regional
regulations in compliance with the 11th Five-Year Plan, such as the “three rivers and three lakes
basins” region targeted by the central government to reduce chemical oxygen demand (COD)
as an effort to control water quality (e.g. Wang et al., 2018) and the “Top 1000” program
(later the “Top 10,000” program) that targeted the largest energy consuming firms in the most
energy-intensive industries to improve energy efficiency (e.g. Karplus et al., 2020; Chen et al.,
2021).

4 Firm-level regressions

In this section, I first run some reduced-form firm-level regressions to show patterns between
pollution and a number of firms characteristics. Next, I run two sets of difference-in-differences
(DiD) regressions to show the effects of the WTO accession and the 11th Five-Year Plan on
pollution intensity.

4.1 Pollution and firm characteristics

The first set of regressions evaluates if importers and exporters pollute more using the following
specifications:

logSO2it = α0 + α1Exporterit + α2Importerit + α3log salesit + µs + µc + µt + ϵit (1)

logSO2intit = β0 + β1Exporterit + β2Importerit + β3log salesit + µs + µc + µt + ϵit (2)
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where logSO2it is log SO2 emission (kg) of firm i at year t, logSO2intit is log SO2 emission (kg)
per unit of output value (1,000 yuan). Exporterit and Importerit are exporter and importer
dummies. log salesit represents log of sales at year t in 10,000 yuan and µt, µs, µc are year,
2-digit sector and city fixed effects. log salesit, logSO2it and logSO2intit are trimmed at the
top and bottom 1% to rule out the influence of outliers. The summary statistics are shown in
Table B.2.

The first two columns of Table 1 report the regression results of specification (1). Column
(1) shows that importers and exporters tend to produce more pollution. Column (2) shows
that once I control for firm size, firms that engaged in international trade actually pollute less
intensively than their peers with the same production level. Column (3) follows specification
(2) and confirms the pattern by showing that the pollution intensity of both exporters and
importers are lower on average. This is also true when I control for size in column (4). These
results are in line with the findings by Pei et al. (2021) and Rodrigue et al. (2022b), who show
that exporters are less pollution intensive.

Table 1. SO2 pollution and firm characteristics (all firms)

(1) (2) (3) (4)
logSO2 logSO2 logSO2int logSO2int

Exporter 0.158*** -0.217*** -0.598*** -0.217***
(0.008) (0.007) (0.008) (0.007)

Importer 0.304*** -0.278*** -0.831*** -0.278***
(0.010) (0.009) (0.010) (0.009)

log sales 0.498*** -0.502***
(0.001) (0.001)

Observations 798,666 777,539 777,539 777,539
R-squared 0.194 0.376 0.414 0.545
Sector FE ✓ ✓ ✓ ✓
City FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

Notes: Standard errors in parentheses. * significant at 10%, ** signif-

icant at 5% , *** significant at 1%.

Next, I focus on importers/exporters and see if the amount of international trade affects
their pollution behavior. The specifications are the following:

logSO2it = α0 + α1logExportit + α2logImportit + α3Laborit + µs + µc + µt + ϵit (3)

logSO2intit = β0 + β1logExportit + β2logImportit + β3Laborit + δControlit + µs + µc + µt + ϵit (4)

where logSO2it and logSO2intit are SO2 emission and emission intensity following the defini-
tions in specifications (1) and (2). logExportit and logImportit are export and import value in
logs, respectively. I use the number of employees Laborit in hundreds instead of sales as a proxy
for firm size to reduce collinearity with import and export. The control variables Controlit
include firm total factor productivity (TFP ) following Levinsohn and Petrin (2003), with Acker-
berg et al. (2015) correction.5 FOE is foreign ownership status dummy. SO2cap is the provincial
SO2 regulation cap in 10,000 tons by 2010. 2-digit sector, city and year fixed effects µs, µc and
µt are controlled. logExportit, logImportit and Laborit are trimmed at the top and bottom 1%.
The summary statistics are shown in Table B.3.

The first two columns of Table 2 imply that the importers/exporters emit more pollution
the more they trade. The next two columns (3) and (4) confirm the previous finding from Table

5Specifically, the TFP is measured by the log output minus a weighted sum of log labor, capital and materials:
TFPit = yit − αllit − αkkit − αmmit. The output is deflated with 2-digit industry-specific producer price index,
the capital is deflated with provincial fixed assets investment price index, and the materials are deflated with
annual purchasing price index. All price indices are collected from China Statistical Yearbooks.
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1 that taking the firm size into consideration, the pollution intensity of exporters and importers
decreases with trade values. Column (5) shows that firms with higher TFP have significant lower
pollution intensity. Column (6) controls for foreign ownership FOE. Compared to domestic-
owned firms, foreign-owned firms pollute less intensively. Finally, the last column includes the
pollution cap for each province by 2010 as an indicator of environmental policy stringency. The
unit of observation is 10,000 tons. A higher cap means less strict enforcement. The positive
significant coefficient indicates that a more stringent cap is correlated with a reduction in the
pollution intensity of the firm.

Table 2. SO2 pollution and firm characteristics (importers/exporters)

(1) (2) (3) (4) (5) (6) (7)
logSO2 logSO2 logSO2int logSO2int logSO2int logSO2int logSO2int

logExport 0.130*** 0.065*** -0.042*** -0.041*** -0.020*** -0.018** -0.018**
(0.005) (0.007) (0.005) (0.007) (0.008) (0.008) (0.008)

logImport 0.045*** 0.016*** -0.138*** -0.124*** -0.099*** -0.095*** -0.094***
(0.004) (0.005) (0.004) (0.005) (0.006) (0.006) (0.006)

Labor 0.045*** -0.003*** 0.004*** 0.003** 0.003**
(0.001) (0.001) (0.001) (0.001) (0.001)

TFP -0.739*** -0.737*** -0.738***
(0.016) (0.016) (0.016)

FOE -0.401*** -0.402***
(0.047) (0.047)

SO2cap 0.015***
(0.005)

Observations 51,191 26,411 41,696 25,786 18,385 18,385 18,385
R-squared 0.289 0.335 0.388 0.366 0.421 0.423 0.423
Sector FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
City FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: Standard errors in parentheses. * significant at 10%, ** significant at 5% , *** significant at 1%.

Using 4-digit industry fixed effects with 4-digit deflators from Brandt et al. (2017) to estimate
TFP gives similar regression results in Table B.4 and Table B.5. Regressions including firm-
level FE show similar patterns, see Table B.6 and Table B.7, where the estimated coefficients
for foreign ownership are subsumed by the firm fixed effects and are therefore omitted.

Based on the basic patterns at the firm-level, I then explore the effects of two policies on
China’s SO2 emission, namely the WTO accession and the 11th Five-Year Plan.

4.2 Trade liberalization

I use a generalized difference-in-differences (DiD) method (Pierce and Schott, 2016) to estimate
the impact of WTO accession in 2001 on SO2 pollution intensity. Following Brandt et al.
(2017), I use import tariffs as the key measure of trade openness, because they provide the
most accurate and detailed information on the trade reform. All the manufacturing industries
experienced some bilateral tariff reduction, thus, there is not a control group that had no
industrial tariff change. The research design leverages on the different degrees of trade reform
across 429 manufacturing industries at the 4-digit level. The tariff levels are also continuous
instead of a treatment dummy in the canonical DiD approach. Specifically, I estimate the
following equation:

logSO2intit = β0 + β1 tariff
1998
s ×WTOt + log salesit + ηs + δct + µi + ϵit (5)

where logSO2intit denotes log of SO2 pollution intensity (kg/1,000 yuan) of firm i at time t.
WTOt is a binary indicator of China’s entry to the WTO, which is equal to 1 if the year is after
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2001 and 0 otherwise. log salesit is log of firm sales in 1,000 yuan. ηs, δct, and µi are 4-digit
China Industry Classification (CIC) industry, city-year, and firm fixed effects. ϵit is the error
term. The standard errors are clustered at the industry-year level.

(a) Average output and input tariffs

(b) Input tariffs (simple average) (c) Output tariffs (simple average)

Figure 2. Tariff levels and tariff changes

I use tariff1998s to denote the input/output tariff at the 4-digit CIC industry level in 1998,
which is before the WTO accession at the beginning of the sample. Following Cui et al. (2020), I
do not use tariffs in the current year because they may be endogenous to the pollution outcome.
As pointed out by Lu and Yu (2015), the pre-accession tariff is a significant predictor of future
import growth. Lagged tariffs also suffer from the problem. The import tariff rates at 4-digit
ISIC level from 1998 to 2011 are retrieved from the World Bank’s WITS dataset. The import
tariff rates are not available in 2012. I keep both simple average and product line weighted
average tariffs to obtain the output tariffs. Input tariffs are calculated using China’s input-
output (IO) table in 2002.6 Specifically, input tariffs are weighted average of output tariffs,

6The input-output tables of China are available every five years. Using the input-output table of 1997 instead
of 2002 gives very similar results. See Figure A.5 for the tariff levels and changes, Table B.13 for the baseline
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where the weights are the industry input shares. The concordance table to convert 3-digit IO
industries to 4-digit CIC industries is sourced from Brandt et al. (2017). Figure 2a shows the
aggregate trend of output and input tariffs over time. The tariffs dropped significantly after
China joined the WTO in 2001 and continued to decrease in the following years. The output
tariffs are substantially higher than the input tariffs, as in Brandt et al. (2017). Figure 2b and
2c further shows that the simple average input and output tariff levels and tariff changes are
positively related to each other. Thus, using the tariff level in 1998 reflects the impact of trade
liberalization. Table B.8 presents the summary statistics of the key variables.

The estimation results of Equation (5) are presented in Table 3. WTO accession and tariff
reduction decreases firm SO2 pollution intensity. This is true for simple average or weighted
average input tariffs in the first two columns, as well as for simple average and weighted average
output tariffs in columns (3) and (4). Column (5) includes both simple average input and output
tariffs, while column (6) includes both weighted average input and output tariffs. The effects
remain consistent, though the coefficients of output tariffs become statistically insignificant.
According to the baseline estimation, a 1% point lower input tariff in the initial period would
decrease SO2 emission intensity by 1.1% to 1.4% on average in the following years.

Table 3. Impact of trade liberalization on SO2 pollution intensity

logSO2int (1) (2) (3) (4) (5) (6)

tariff1998savg.input ×WTO -0.014*** -0.014***
(0.002) (0.002)

tariff1998wavg.input ×WTO -0.011*** -0.012***
(0.002) (0.002)

tariff1998savg.output ×WTO -0.003*** -0.001
(0.001) (0.001)

tariff1998wavg.output ×WTO -0.002*** -0.000
(0.001) (0.001)

log sales -0.684*** -0.684*** -0.682*** -0.682*** -0.682*** -0.682***
(0.006) (0.006) (0.007) (0.007) (0.007) (0.007)

Observations 572,631 572,631 530,643 530,643 530,643 530,643
Adj. R-squared 0.845 0.845 0.847 0.847 0.847 0.847
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓ ✓ ✓ ✓
City-Year FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: Standard errors in parentheses, clustered at the industry-year level. “savg” and “wavg” represent

simple average and weighted average tariffs respectively. * significant at 10%, ** significant at 5% , ***

significant at 1%.

To get a better sense of the trade liberalization effect over time, I interact the tariff vari-
able with each year in the sample, instead of one binary WTO variable and run the following
regression:

logSO2intit = β0 +
t∑
βt tariff

1998
s ×Dt + log salesit + ηs + δct + µi + ϵit (6)

where Dt is the year dummy, and the beginning year of the sample period 1998 is omitted. The
estimation results are plotted in Figure 3. Consistent with the regressions, the overall effects of
input tariffs are larger than those of output tariffs. The effect of the input tariff was significant
right after the WTO accession and grew larger over the following years till 2008. The effect
of the output tariff was significant since 2004 and the magnitude became smaller since 2008.
For both input and output tariffs, the effect on firm pollution intensity flattened out and even

regression results.
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reversed in the last few years of the sample period, potentially because tariff rates stabilized
and were sufficiently low to further influence pollution emissions.

(a) Output tariff (b) Input tariff

Figure 3. Impact of trade liberalization on SO2 pollution intensity (simple average tariffs)

Notes: The graph plots the estimates of trade liberalization effects over time, along with the 95% confidence

intervals. The vertical dashed line indicates the year of China’s WTO accession.

To check the robustness of the baseline results, I use alternative tariffs to measure the
extent of trade liberalization. In the spirit of Brandt et al. (2017), I use tariffs before the WTO
accession in 1998 as instruments for the actual one-year lag tariffs to obtain predicted tariffs. I
then calculate the change between the predicted tariffs and the tariffs at the beginning of the

sample ∆t̂ariff st. In this way, I could reduce endogeneity concerns such as reverse causality
between tariffs and the outcome variable. The summary statistics of the alternative tariffs
are presented in Table B.8. The regression results are presented in Table B.9. The first-stage
regressions on instrument variables are presented in Table B.10. The initial period tariffs are
strongly correlated with the current tariffs. The estimated coefficients are consistent with the
baseline results, with larger magnitudes. A 1% point input tariff reduction would decrease SO2

emission intensity by 1.7% to 2.1% on average in the following years. Using tariffs in 1998 as
instruments of tariff changes directly with two-stage least-squares (2SLS) regressions gives close
results in Table B.11 where the first stage is shown in Table B.12.

4.3 Environmental regulation

Next, I use different emission caps across provinces during the 11th Five-Year Plan to measure
the effect of environmental regulation on firm SO2 emission. One concern is that the trade
reform and the environmental regulation may be correlated. Since the 11th Five-Year Plan
started in 2006, which was five years after the WTO accession in 2001, it is unlikely that
the environmental regulation affects the tariff reduction. In addition, as shown in Figure 2a,
the tariff rates were sufficiently low after the first few years of the trade reform and already
stabilized upon the beginning of the environmental regulation. However, the emission caps
may be affected by the exposure to trade shocks across provinces. To check this concern, I
construct the exposure to tariff shocks by province using 2-digit industry output shares from
the yearbooks and run regressions on the emission caps. The results in Table B.15 show that
the tariff shocks are not directly related to the emission caps by province.

Analogous to the DiD approach in the trade reform section, all the provinces received emis-
sion quotas, the difference lies in the stringency of the policy. Thus, there is not a control group
that faced no environmental regulation. The research design leverages on the different degrees
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of treatment across provinces. The emission targets are also continuous instead of a treatment
dummy in the canonical DiD approach. I estimate the following difference-in-differences (DiD)
specification:

logSO2intit = β0 + β1 logTargetp × FY Pt + log salesit + δp + ηst + µi + ϵit (7)

where logSO2intit is the log of emission intensity (kg/10,000 yuan) of firm i and year t. Since the
emission quota was a negotiated outcome between the central government and each province,
it may be related to the size of the province. Therefore, I use logTargetp which is the log SO2

emission target in province p measured by the ratio of the province GDP (yuan) to SO2 target
level (kg) in 2010. FY Pt is an indicator variable of the 11th Five-Year Plan which is equal
to 1 if the year is after 2005, and 0 otherwise. A higher emission target indicates more strict
regulation. The coefficient of interest β1 reflects the effectiveness of the policy, a negative β1
means firms in provinces with more strict regulation would emit less. log salesit is log of firm
sales in 1,000 yuan. δp, ηst and µi are province, industry-year and firm fixed effects. ϵit is the
error term. The standard errors are clustered at the province-year level. The summary statistics
are shown in Table B.14. The regression results are shown in Table 4. If the provincial Target
increases by 1 %, the firm-level pollution intensity would decrease by around 0.07% to 0.09%.

Again, I run the regression by period following the specification:

logSO2intit = β0 +
t∑
βt logTargetp ×Dt + log salesit + δp + ηs + µi + ϵit (8)

where Dt is the year dummy, and the beginning year of the sample period 1998 is omitted.
Figure 4 shows that the impact of environmental regulation is not significant before the policy
but becomes significant after the implementation of the 11th Five-Year Plan, with a growing
trend in magnitude.

Table 4. Impact of environmental regulation on SO2 emission intensity

logSO2int (1) (2) (3) (4)

logTarget× FY P -0.089*** -0.091*** -0.074*** -0.079***
(0.025) (0.025) (0.024) (0.024)

log sales -0.676*** -0.676*** -0.673*** -0.673***
(0.006) (0.006) (0.006) (0.006)

Observations 588,157 588,157 588,157 587,870
Adj. R-squared 0.831 0.832 0.833 0.835
Firm FE ✓ ✓ ✓ ✓
Year FE ✓ ✓
Province FE ✓ ✓ ✓ ✓
2-digit Industry FE ✓
4-digit Industry FE ✓
2-digit Industry-Year FE ✓
4-digit Industry-Year FE ✓

Notes: Standard errors in parentheses, clustered at the province-year level. *

significant at 10%, ** significant at 5% , *** significant at 1%.
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Figure 4. Impact of environmental regulation on SO2 pollution intensity

Notes: The graph plots the estimates of environmental regulation effects over time, along with the 95% confidence

intervals. The vertical dashed line indicates the start of China’s 11th Five-Year Plan.

A concern with the DiD regressions is that the pollution targets may be correlated with
some time-varying provincial characteristics that bias the results. Therefore, following Shi and
Xu (2018) who studied the regional SO2 regulation during the 10th Five-Year Plan, I carry out
a triple difference (DDD) strategy and include variance in industry pollution emissions. The
assumption is that firms in dirtier industries would respond to the emission cap more since the
policy was implemented. The specification is the following:

logSO2intit = β0+β1 logTargetp×FY Pt× logSO2s+log salesit+γpt+ δps+ηst+µi+ ϵit (9)

where logSO2intit is the log of emission intensity (kg/10,000 yuan) of firm i and year t.
logTargetp is the log SO2 emission target in province p measured by the ratio of the province
GDP (yuan) to SO2 target level (kg) in 2010. FY Pt is an indicator variable of the 11th Five-Year
Plan which is equal to 1 if the year is 2006 and afterwards, and 0 otherwise. logSO2s is the log
average SO2 emission of each 2-digit industry between 2000 and 2005. γpt, δps, ηst and µi are
province-year, province-industry, industry-year and firm fixed effects. ϵit is the error term. The
standard errors are clustered at the province-industry level. The regression results are shown
in Table 5. More stringent pollution regulation during the 11th Five-Year Plan decreases firm
pollution intensity, especially in industries with high SO2 pollution emissions.

Since the WTO accession and the 11th Five-Year Plan have overlapping time periods, I
combine them in the same regression to check if they affect each other. The details are in
Appendix C and the results are consistent with the separate effects of the two policies.

One caveat of the DiD analysis is that the policy effects on pollution intensity come from
relative changes across industries or across regions, while the industry structure may change over
the years, and firm production may shift within a conglomerate (Chen et al., 2021). Therefore,
it is necessary to check the contribution of industry structural change to total pollution in the
following section using decomposition exercises. In addition, Section 6 introduces a multi-sector
general equilibrium model to take into account the potential inter-regional shift of production
and derive aggregate pollution outcomes due to the policies.
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Table 5. Impact of environmental regulation on SO2 pollution intensity (triple differences)

logSO2int (1) (2) (3) (4)

logTarget× FY P× logSO2 -0.026** -0.006** -0.028*** -0.006***
(0.013) (0.002) (0.008) (0.002)

log sales -0.509*** -0.678*** -0.506*** -0.678***
(0.008) (0.009) (0.007) (0.008)

Observations 555,166 506,839 545,575 500,151
Adj. R-squared 0.541 0.838 0.711 0.845
Province-Year FE ✓
Province-Industry FE ✓ ✓
Industry-Year FE ✓ ✓ ✓ ✓
City-Year FE ✓
City-Industry FE ✓ ✓
Firm FE ✓ ✓

Notes: Standard errors in parentheses, clustered at the province-industry level. *

significant at 10%, ** significant at 5% , *** significant at 1%.

5 Decomposition

This section conducts the decomposition exercise of total pollution first at the industry-level
following the notation of Levinson (2009). I then decompose pollution intensity at the firm-level
in the spirit of Melitz and Polanec (2015), taking into consideration the entry and exit of firms.

5.1 Industry-level decomposition

The total manufacturing pollution Z can be written as:

Z =
∑
s

zs =
∑
s

xses = X
∑
s

κses (10)

where zs is the pollution from each sector s, which equals the output xs times the emission
intensity es. es = zs/xs is the pollution per unit of output. If each sector’s share of total output
is denoted as κs = xs/X, Z equals the final term of equation (10). Put in vector forms:

Z = Xκ′e (11)

Totally differentiating equation (11) yields:

dZ = κ′edX︸ ︷︷ ︸
scale

+ Xe′dκ︸ ︷︷ ︸
composition

+ Xκ′de︸ ︷︷ ︸
technique

(12)

The three terms on the right-hand-side of equation (12) represent the scale, composition and
technique effects respectively. The scale effect reflects the change in total pollution due to
the size of the manufacturing sectors, holding the sector composition and pollution intensity
fixed. The composition effect accounts for the change in industry mix, keeping the total size
of manufacturing sectors and pollution intensity constant. The technique effect captures the
change in pollution intensity and represents the technical frontier of production, assuming the
scale and composition are fixed. I then calculate these components according to equation (12),
while the output is deflated with 2-digit industry-year specific indices from China Statistical
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Yearbooks.7,8 Both firm-level pollution and output are trimmed at 1% tails to remove outliers.
The results are shown in Figure 5. The blue dashed line depicts what the total pollution level
would look like relative to the year 1998 if the industry composition and technique remained
the same and only the scale effect is at work. The red dashed line plots the hypothetical trend
of pollution keeping the technique constant and let the scale and composition of industries
change. The green solid line shows the actual change in total pollution by combining the scale,
composition and technique effects. The scale effect increases pollution over the period. Adding
the composition effect slightly reduces total pollution, but the trend closely follows that of scale
effect alone, as in Cole and Zhang (2019) and Rodrigue et al. (2022a), whereas the technique
effect greatly reduces pollution.9

Figure 5. Industry-level SO2 emission decomposition

The main difference between the components of Chinese and US pollution, as quantified
by Shapiro and Walker (2018) is that the magnitude of China’s pollution level relative to the
baseline period is much higher than in the US. The sum of the three effects nearly doubled
during 15 years in China while in the US the net pollution level decreased more than half over
20 years. The scale and composition effects are also different between China and the US, with
China more than doubled and the US less than 40% growth.

One concern of the conventional industry-level decomposition in the literature is that hetero-
geneities in firm markups are not considered. To mitigate the bias of markups, I follow Rodrigue
et al. (2022a) and use cost shares instead of revenue shares to aggregate emission intensities to

7The exact decomposition can be written as ∆Zt = ∆Zt

∑
i

κiteit + Zt−1

∑
i

∆κiteit + Zt−1

∑
i

κi,t−1∆eit.

Another way is to write the scale and composition effects as ∆Zt

∑
i

κiteit and Zt

∑
i

∆κiteit, while the technique

effect is the residual from ∆Zt. Both the two methods of decomposition give similar results.
8The manufacturing industries begin with industry code 13-43, which are aggregated into 28 industries due

to changes between different versions of classification.
9Cole and Zhang (2019) use yearbook statistics instead of firm-level aggregate data, while Rodrigue et al.

(2022a) use pollution data matched with manufacturing survey, which reduces the number of firms by half.
Fortunately, firm output information is readily available in the pollution data from EPS which allows me to use
all firms to capture a full picture of manufacturing pollution in the decomposition. Decomposition at 4-digit
industries with 4-digit deflators from Brandt et al. (2017) instead of decomposition at 2-digit industries gives
similar results, see Figure A.6a. The composition effect is only positive when the revenues are not deflated and
the decomposition is at 2-digit industries, see Figure A.6b. In either case, the magnitudes are similar.
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the industry-level. To do this, I need to merge the pollution data with the production data,
which reduces the pollution sample size by half. I use operating costs to compute cost shares
and compare the decomposition with revenue shares. The results are summarized in Figure A.7.
The dip around 2009 is because the production was reduced during the global financial crisis,
which is reflected in the merged data. The decomposition using cost shares instead of revenue
shares show slightly higher scale effect as well as the combination of scale and composition
effects, but the overall trends remain close.10

5.2 Firm-level decomposition

Next, I decompose pollution intensity at the firm-level following the method of Melitz and
Polanec (2015), taking into consideration the entry and exit of firms. The change in average
emission intensity ι over time (from t = 1 to 2) can be decomposed into three groups of firms,
namely, continuing (C), entering (E) and exiting (X) firms:

ι1 =sC1ιC1 + sX1ιX1 = ιC1 + sX1(ιX1 − ιC1) = ῑC1 + covC1 + sX1(ιX1 − ιC1)

ι2 =sC2ιC2 + sE2ιE2 = ιC2 + sE2(ιE2 − ιC2) = ῑC2 + covC2 + sE2(ιE2 − ιC2)
(13)

The pollution intensity expressed in change ∆ι is:

∆ι = (ιC2 − ιC1) + sE2(ιE2 − ιC2) + sX1(ιC1 − ιX1)

= ∆ῑC︸︷︷︸
within-firm

+ ∆covC︸ ︷︷ ︸
across-firm︸ ︷︷ ︸

continuing firms

+ sE2(ιE2 − ιC2)︸ ︷︷ ︸
entering firms

+ sX1(ιC1 − ιX1)︸ ︷︷ ︸
exiting firms

(14)

where sGt =
∑

i∈G sit represents the aggregate market share in revenue of firms in group G
(G ∈ {C,E,X}) and ιGt =

∑
i∈G(sit/sGt)ιit is the group’s weighted average emission intensity.

Among continuing firms, the first term ῑC = 1
n

∑n
i=1 ιi is the unweighted mean firm emission

intensity. The second term covC =
∑

i(si − s̄)(ιi − ῑ) is the covariance between revenue share
and emission intensity, where s̄ = 1/n is the mean market share within the subset of continuing
firms. I take year 1998 as the initial period t = 1 and all the changes are relative to this baseline
year.

Table B.16 reports the decomposition results in changes. The changes in firm pollution
intensity are mainly because of within and across firm composition effects over the years (73%
to 95% ), while firm entry and exit account for much less. The decomposition outcome in
pollution intensity levels is summarized in Table B.17. I then plot the decomposition results in
Figure 6a. The green solid line represents the real pollution intensity levels when all firms are
taken into account. The within-firm average scale effect is the upper dashed blue line, which
drives up the emission intensity of Chinese manufacturing firms, though the within-firm effect
declined over time. The dotted-dash red line includes both within and across firm effects, i.e.,
the pollution intensity levels of continuing firms. The result implies that cross-firm differences
reduce the pollution intensity dramatically, which captures reallocation of market shares towards
less pollution-intensive firms. The within-firm and across-firm effects combined is very close to
the trend of all firms, which indicates that firm entry and exit contribute relatively less to the
overall emission intensity. Figure 6b shows the effects of firm entry and exit in more details. I
also conduct the firm-level decomposition by sector and then calculate sector averages of each
component. The results are plotted in Figure A.8 and qualitatively similar.

10An alternative way is to follow Rodrigue et al. (2022a) and use intermediate inputs plus wage bills to
represent costs. However, the data after 2007 are not available.
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(a) Within and across continuing firms (b) Entry and exit

Figure 6. Firm-level SO2 emission intensity decomposition

Another way to decompose emission intensity at the firm-level is proposed by Martin (2012).
The details are in Appendix D. The decomposition results are consistent with the decompo-
sitions above in the sense that within-firm effect increases pollution intensity, and across-firm
effect reduces pollution intensity, while across-industry effect of pollution emissions is relatively
small.

The evidence from the regressions and decompositions show the following stylized facts: (i)
Large firms pollute more but firms that import and export more are on average less pollution
intensive. (ii) Firms in provinces with more stringent environmental regulations pollute less
intensively. (iii) Higher TFP and foreign ownership help firms reduce pollution emission. (iv)
Most pollution reduction is due to within-sector, across firm changes, rather than the com-
position of manufacturing industry structure. The next question is what are the mechanisms
and magnitudes of trade, productivity and environmental regulation on pollution under general
equilibrium? To answer it, I need a structural model with heterogeneous firms and variation
across sectors over time in the following section.

6 A structural model of pollution emissions

I use a general equilibrium model from Shapiro and Walker (2018) to analyze pollution emission
levels under various counterfactual conditions. I first introduce the setup of the model, and then
estimate key parameters and recover historical values for counterfactuals. The model features
firms that differ in productivity, and choose different pollution abatement costs. Labor is the
only production factor and it is supplied inelastically. In addition to fixed and variable trade
costs, firms also pay a pollution tax depending on their emissions. The model is static and
hence it doesn’t feature firm dynamics. The model takes bilateral export tariff costs to measure
variable trade costs, so input tariffs are not part of the model, neither is foreign ownership. One
can derive analytical solutions from the model to guide the counterfactual analysis.

6.1 Setup

6.1.1 Preferences

The representative consumer in destination country d has the following utility function:

Ud =
∏
s

[∑
o

∫
ω∈Ωo,s

qod,s(ω)
σs−1
σs dω

] σs
σs−1

βd,s

(15)
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where utility across product varieties ω within a sector s is CES and Cobb-Douglas across
sectors. Ωo,s is the measure of goods from origin country o and each variety of good is denoted
by ω. The parameter βd,s is country d’s expenditure share on sector s which satisfies

∑
s βd,s = 1.

qod,s(ω) is the quantity of goods and σs represents the elasticity of substitution across varieties
in each sector.

Solving the representative agent’s utility-maximization problem gives the demand for each
variety qod,s:

qod,s(ω) =
(pod,s(ω))

−σs

(Pd,s)1−σs
Ed,s (16)

where the price index is:

Pd,s =

[∑
o

∫
ω∈Ωo,s

pod,s(ω)
1−σsdω

] 1
1−σs

(17)

and Ed,s =
∑

o

∫
ω∈Ωo,s

pod,s(ω)qod,s(ω)dω is national expenditure on sector s.

6.1.2 Firms and market structure

Firms in sector s pay a sunk entry cost feo,s to draw productivity φ from a given distribution
and, conditional on operating, face fixed production costs fod,s, which are specific to destination
market d. Due to increasing returns to scale, each firm is the only producer of any variety and
operates under monopolistic competition. In particular, a firm with productivity φ chooses its
prices pod,s and emission abatement a to maximize the following profit function:

πo,s(φ) =
∑
d

πod,s(φ)− wof
e
o,s (18)

πod,s(φ) = pod,s(φ)qod,s(φ)− wolod,s(φ)τod,s − to,szod,s(φ)τod,s − wdfod,s

where pod,s(φ) is the price, wo is the wage of labor lod,s(φ), to,s represents pollution tax on
pollution zod,s(φ) and τod,s ≥ 1 is the iceberg trade cost.

Assume productivity distribution is Pareto with cumulative distribution:

G(φ; bo,s) = 1−
(
φ

bo,s

)−θs

(19)

where bo,s is the location parameter which reflects the country-sector productivity, and θs is the
shape parameter that describes the dispersion of productivity in sector s.

6.1.3 Production and pollution

Firms sell the number of units:

qod,s(φ) = (1− aod,s(φ))φlod,s(φ) (20)

where aod,s is the abatement investment. A fraction aod,s of input is used to abate pollution
and the remaining 1− aod,s is used to produce output.

Firms produce pollution emission:

zod,s(φ) = (1− aod,s(φ))
1
αs φlod,s(φ) (21)

where αs is the pollution elasticity by sector. This equation shows that pollution is decreasing
in abatement and increasing in output which is adopted by Copeland and Taylor (2003).

Combing equations (20) and (21), I can write output as a Cobb-Douglas function of pollution
emissions and productive factors:

qod,s = (zod,s)
αs(φlod,s)

1−αs (22)

where αs is the Cobb-Douglas share of pollution emissions.
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6.1.4 Intermediate results

Firms: Firms choose prices pod,s and abatement cost aod,s to maximize profits. The first-order
condition for aod,s gives:

1− aod,s =

(
wo

φto,s

αs

1− αs

)αs

(23)

The first-order condition for pod,s gives:

pod,s(φ) =
σs

σs − 1

co,sτod,s
φ1−αs

(24)

where

co,s =
(to,s)

αs(wo)
1−αs

(αs)αs(1− αs)1−αs

Thus the firm profits can be expressed as:

πod,s(φ) =
rod,s(φ)

σs
− wdfod,s (25)

where rod,s(φ) = pod,s(φ)qod,s(φ) is firm revenue.

Cutoff productivity: Let φ∗
od,s denote the cutoff productivity which makes a firm earn zero

profits from selling in market d. Therefore, πod,s(φ
∗
od,s) = 0. Combining demand (16) and profit

(25) implies:

wdfod,s =
1

σs

pod,s(φ
∗
od,s)

1−σs

P
(1−σs)
d,s

Ed,s

Substituting price (24) and then solving for φ∗
od,s gives:

φ∗
od,s =

[
σs

σs − 1

co,sτod,s
Pd,s

(
σswdfod,s
Ed,s

) 1
σs−1

] 1
1−αs

(26)

Free entry: The equilibrium fixed entry cost should equal the expected profit from drawing a
productivity:

wof
e
o,s = (1−G(φ∗

oo,s))E(π|φ > φ∗
oo,s)

In addition, the conditional density of the Pareto distribution is :

g(φ|φ > φ∗
od,s) = g(φ)/(1−G(φ∗

od,s)) = θs
(φ∗

od,s)
θs

φθs+1
(27)

Substituting price (24), profit (25), the cutoff productivity (26) and the Pareto conditional
density (27) yields that the zero profit productivity φ∗

oo,s from producing domestically satisfies:

feo,s
θs − (σs − 1)(1− αs)

(σs − 1)(1− αs)
=
∑
d

(bo,s)
θs

(φ∗
oo,s)

θs

wd

wo
fod,s

These results will be used later to derive conclusions in comparative statics.
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6.1.5 Competitive equilibrium

There are two conditions for a competitive equilibrium. The first condition is on labor market
clearing, where labor supply Lo must equal labor demand in each country:

Lo = Le
o + Lp

o + Lt
o + Lm

o + Lnx
o (28)

where labor demand includes sunk cost to draw a productivity Le
o, pollution abatement cost

Lp
o, paying pollution taxes Lt

o, market entry cost Lm
o and net export cost Lnx

o .
The second condition is that the expected profit must equal the fixed cost of drawing a

productivity:
1− αs

θs

σs − 1

σs
Ro,s = wof

e
o,sM

e
o,s (29)

where M e
o,s measures attempted entrants, which is the mass of entrepreneurs drawing a produc-

tivity. Ro,s is national revenue from sector s.

6.1.6 Comparative statics

Before carrying out the quantitative analysis, it is useful to explore the effects of pollution taxes,
productivity and trade liberalization analytically to better understand the implications of the
model. The proof is detailed in Appendix E.

PROPOSITION 1:
At the firm-level, pollution intensity is locally decreasing in productivity.

Analytically,
∂io,s(φ)

∂φ
= (αs − 1)

io,s(φ)

φ
< 0

where io,s(φ) =
∑

j zoj,s(φ)/
∑

j qoj,s(φ) is the pollution intensity of a firm with productivity φ.
The reason is that firms with higher productivity invest more in pollution abatement to

maximize profit, as shown in the first-order condition (23).

PROPOSITION 2:
At the sector level, pollution intensity is locally decreasing in pollution taxes, in productivity

and in trade liberalization.
Analytically,

∂Io,s
∂to,s

=
Io,s
to,s

(αsλoo,s − 1) < 0,
∂Io,s
∂bo,s

= −(1− αs)
Io,s
bo,s

λoo,s < 0,
∂Io,s
∂τdo,s

=
Io,s
τdo,s

λdo,s > 0.

where Io,s = Zo,sPo,s/Ro,s is the pollution intensity of a sector, and λod,s is country d’s expen-
diture share in sector s purchased from country o.

The intuition is that pollution tax makes firms invest more on pollution abatement as shown
in (23). Productivity increases the output, thereby decreasing pollution intensity. Lower trade
cost allows a sector to emit less pollution in order to obtain the same output. The reallocation
effect of trade also shifts market share towards more productive firms that have lower pollution
intensity.

To gauge the magnitude of contribution through each channel to the total pollution emissions
level, I then move on to the quantitative counterfactual analysis.

6.1.7 Method of counterfactual analysis

To analyze counterfactuals, I use the hat algebra following Dekle et al. (2008) and rewrite each
variable as a proportional change from a baseline year. The benefit of this method is that
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unchanged variables that are difficult to measure will be canceled out and do not appear in
changes so that there is no need to worry about their exact values. Formally, let x denote a
variable from the model, x′ denotes the variable under a counterfactual scenario, the propor-
tional change in the variable due to the counterfactual is x̂ = x′/x. China is considered the
home country while the rest of world is considered as foreign. The equilibrium conditions (28)
and (29) expressed in changes are as follows11:

1 = ψo

(∑
s M̂

e
o,sRo,s

(σs−1)(θs−αs+1)
σsθs

+ η′o∑
sRo,s

(σs−1)(θs−αs+1)
σsθs

+ ηo

)
(30)

ŵo =
∑
d

ζod,sŵ
−θs
o Γ̂od,s∑

o λod,sM̂
e
o,sŵ

−θs
o Γ̂od,s

β̂d,s
R′

d −NX ′
d

Rd −NXd
(31)

where firm entry M̂ e
o,s and nominal wage ŵo are endogenous variables to be solved. The other

variables can be obtained from the data. β̂d,s is the Cobb-Douglas expenditure share, Γ̂od,s is a
market competitiveness measure detailed in Section 6.3, which contains the implicit pollution
tax t̂o,s. Ro,s is national revenue from sector s, and λod,s is the share of country d’s expenditure
in sector s going to country o. ζod,s = Xod,s/

∑
dXod,s is export share, and NX represents net

exports (exports minus imports). σs, θs and αs are parameters to be estimated in Section 6.2.
ψo and ηo are parameter combinations.

From the two conditions I can solve a set of non-linear equations for each year and obtain
the wages ŵo and firm entry decisions M̂ e

o,s that characterize each counterfactual. The system
has 2s+ 1 equations and 2s+ 1 unknowns so it is just-identified.

Each sector’s pollution emissions in country o between a baseline year and a counterfactual
is:

Ẑo,s =
M̂ e

o,sŵo

ˆto,s
(32)

where M̂ e
o,s and ŵo are endogenous variables that depend on changes in foreign and domestic

market competitiveness, expenditure shares and pollution tax {Γ̂od,s, β̂d,s, t̂o,s}.

6.2 Parameter estimates

There are three sets of parameters to estimate in order to run the model, namely, the pollution
elasticity αs, the elasticity of substitution σs and the Pareto shape parameter θs for each sector
s.

6.2.1 Pollution elasticity

The pollution elasticity is estimated in Shapiro and Walker (2018) by regressing pollution in-
tensity on abatement investment. They then instrument changes in abatement cost share with
changes in local environmental regulation stringency. However, it is not feasible with the Chi-
nese data due to lack of precise abatement cost information and prefecture-level regulation
stringency is neither readily available nor comprehensive.12 Therefore, I estimate equation (22)
instead:

qod,s = (zod,s)
αs(φlod,s)

1−αs

where the pollution elasticity αs is the Cobb-Douglas share for pollution emissions. The firm
productivity φ is the total factor productivity (TFP) following Levinsohn and Petrin (2003),

11I refer readers to the appendix of Shapiro and Walker (2018) for more details on the derivations.
12Rodrigue et al. (2022b) instead measures emission output abatement rather than abatement cost, and their

measure is also endogenous.
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with Ackerberg et al. (2015) correction.13 The deflators come from China Statistical Yearbooks.
I then rewrite the equation into the following econometric specification:

lnqit = αlnzit + (1− α)ln(φlit) + νt + νc + νs + ϵit (33)

where the pollution elasticity αs is the estimated average coefficient of pollution emission zit for
all manufacturing firms, qit and lit are output and labor employment of firm i respectively, and φ
is TFP.14 The year, city and 4-digit industry fixed effects are also controlled. Once the average α
is obtained, the industry-specific pollution elasticities at the 2-digit level are calculated using the
pollution per unit cost of each industry as weights (Shapiro andWalker, 2018), where the weights
are listed in column (1) of Table 6. The estimated pollution elasticity for each 2-digit sector s
are listed in column (2) of Table 6. The mean pollution elasticity is 0.019, compared to 0.011 in
Shapiro and Walker (2018). The industry with the lowest pollution elasticity is “Manufacture of
communication equipment, computers and other electronic equipment” (α=0.0007), while the
industry with the highest pollution elasticity is “Manufacture of non-metallic mineral products”
(α=0.0789). In Shapiro and Walker (2018), the industry with the lowest pollution elasticity
is “Radio, television, communication” (α=0.0005), and the industry with the highest pollution
elasticity is “Basic metals” (α=0.0557). These industries are closely comparable.

Alternatively, I can estimate the production function taking into consideration labor, capital,
materials, energy input and pollution emission together to simultaneously obtain the pollution
elasticity and productivity, the result is an estimated average pollution elasticity α = 0.021,
which is very close to the baseline estimation of 0.019. Using 4-digit industry deflators from
Brandt et al. (2017) gives the estimated average pollution elasticity 0.017, and 0.020 with the
joint estimate, which are also close to the baseline estimate. In addition to the baseline SO2

pollution elasticity, I also estimated the pollution elasticities of other pollutants as reported in
Table B.18, where the magnitude ranges from 0.009 to 0.035.

The overall estimate of pollution elasticity implies that firms pay around two percent of
their annual costs on pollution abatement. Though detailed firm-level data are not available
to check this, I can compare with some related statistics. According to China Environmental
Statistical Yearbooks, the average pollution abatement investment as a percentage of GDP of
each province is 1.6 percentage, which is of similar magnitude to the estimate. Though this
may seem large, it is of the same order of magnitude compared to the US. For example, Shapiro
and Walker (2018) show that according to the Pollution Abatement Costs and Expenditures
(PACE) survey, pollution abatement costs of manufacturing industries account for about 0.5%
of total manufacturing sales.

An alternative way to check the accuracy of the estimation of αs is to retrieve the abatement

cost aod,s by combining equations (20) and (21) to get
zod,s
qod,s

= (1− a)(1−αs)/αs and compare to

the data. I use industrial waste gas abatement cost as a proxy for SO2 abatement cost since
SO2 is a major component of waste gas. Figure A.9 compares the abatement cost in industrial
waste gas summed by province according to China Environmental Statistical Yearbooks and
the abatement cost implied by the model. The trends are very similar between data and model.

13Specifically, the TFP is measured by the log output minus a weighted sum of log labor, capital, materials and
energy input: TFPit = yit − αllit − αkkit − αmmit − αeeit. The output is deflated with 2-digit industry-specific
producer price index, the capital is deflated with provincial fixed assets investment price index, the materials are
deflated with annual purchasing price index, and the energy input is measured by industrial coal consumption.
Coal is the major source of energy for manufacturing industries in China. Coal consumption takes up 71% of
total manufacturing energy consumption in 2012 according to the EPS database. All price indices are collected
from China Statistical Yearbooks.

14Physical output qod,s is proxied with revenue, deflated by 2-digit industry-specific output price deflators
from China Statistical Yearbooks.
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Table 6. Parameter estimates

CIC sector Pollution
per unit
cost

(g/yuan)

Pollution
elasticity

(α)

Input
share

Elasticity of
substitution

(σ)

Pareto
shape

parameter
(θ)

Code Name (1) (2) (3) (4) (5)

13 Processing of food 0.88 0.0114 0.89 10.01 14.06
14 Manufacture of food 0.99 0.0128 0.76 4.31 5.51
15 Manufacture of beverages 1.09 0.0141 0.63 2.77 2.73
16 Manufacture of tobacco 0.29 0.0038 0.45 1.81 1.41
17 Manufacture of textile 0.81 0.0104 0.85 7.02 10.87
18 Manufacture of textile wearing apparel,

footware, and caps
0.32 0.0042 0.79 4.84 5.56

19 Manufacture of leather, fur, feather and
related products

0.16 0.0021 0.87 8.04 12.12

20 Processing of timber, manufacture of
wood, bamboo, rattan, palm and straw
products

1.47 0.0189 0.89 10.57 13.38

21 Manufacture of furniture 0.25 0.0032 0.77 4.38 9.37
22 Manufacture of paper and paper prod-

ucts
4.03 0.0520 0.83 8.13 10.17

23 Printing, reproduction of recording me-
dia

0.21 0.0027 0.78 4.54 5.56

24 Manufacture of articles for culture, ed-
ucation and sport activities

0.14 0.0018 0.85 6.57 13.19

25 Processing of petroleum, coking and
nuclear fuel

0.90 0.0116 0.90 11.18 11.20

26 Manufacture of raw chemical materials
and chemical products

2.40 0.0310 0.80 5.68 6.94

27 Manufacture of medicines 0.97 0.0125 0.57 2.37 2.35
28 Manufacture of chemical fibers 1.55 0.0200 0.83 6.57 7.00
29 Manufacture of rubber and plastics 0.92 0.0119 0.82 5.79 7.64
30 Manufacture of non-metallic mineral

products
6.11 0.0789 0.76 5.82 8.28

31 Smelting and pressing of ferrous metals 2.54 0.0328 0.87 10.43 10.93
32 Smelting and pressing of non-ferrous

metals
4.75 0.0614 0.82 7.73 7.94

33 Manufacture of metal products 0.27 0.0035 0.83 5.92 6.84
34 Manufacture of general purpose ma-

chinery
0.31 0.0039 0.78 4.51 4.83

35 Manufacture of special purpose machin-
ery

0.56 0.0072 0.79 4.88 6.14

36 Manufacture of transport equipment 0.21 0.0027 0.81 5.32 4.81
38 Manufacture of electrical machinery

and equipment
0.13 0.0016 0.78 4.57 4.83

39 Manufacture of communication equip-
ment, computers and other electronic
equipment

0.05 0.0007 0.82 5.58 5.64

40 Manufacture of measuring instruments
and machinery for cultural activity and
office work

0.14 0.0018 0.80 5.07 5.18

41 Manufacture of artwork and other man-
ufacturing

0.49 0.0063 0.81 5.54 5.87

Mean 1.18 0.019 0.79 6.07 7.51
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One assumption of the model is that firms spend a fraction a if input on pollution abatement,
while the remaining 1−a is used on production. The higher is the pollution abatement cost a, the
more emission should be reduced. The EPS data provide information on the pollution generated
by each firm, the emission reduction, and the final emission. Although this information is not
directly on the cost of emission abatement, as suggested by Rodrigue et al. (2022b), one can
measure the level of outcome on emission abatement using the difference between the emission
generated and the emission reduction. Figure A.10 shows the correlation between the emission
reduction share and abatement cost share by industry across time on the left, and the levels
of emission reduction (ton kg) with abatement cost (billion yuan) on the right. In any case,
the emission reduction and the abatement cost are positively correlated, which supports the
implication of the model. The results remain robust with firm-level regressions in Table B.19.

6.2.2 The elasticity of substitution

Next, I calibrate the elasticity of substitution σs using the following equation:

woL
p
o,s = (1− αs)

σs − 1

σs
Ro,s (34)

where wo is the nominal wage of the origin country, Lp
o,s is the labor used in production. The

product of the two woL
p
o,s represents firm costs. αs is the pollution elasticity estimated above,

and Ro,s is sector revenue. The elasticity of substitution σs is estimated separately for each
2-digit industry as follows:

σs = (1− αs)/(1− αs − woL
p
o,s/Ro,s) (35)

where woL
p
o,s/Ro,s is the sector input share reported in column (3) of Table 6. The approach

to estimate the elasticity of substitution is built on Hsieh and Ossa (2016) and Antràs et al.
(2017) and the estimates are plausible as they are similar to previous findings.15 I use the
information provided by the Annual Survey of Industrial Firms (ASIF) to estimate this set of
parameters and the results are listed in column (4) of Table 6. The sector with the largest
elasticity of substitution is Processing of petroleum, coking, and nuclear fuel (11.18), which
has more homogeneous products and the sector with the smallest elasticity of substitution
is Manufacture of tobacco (1.81) followed by Manufacture of medicines (2.37), which have
relatively more differentiated products. The industries are comparable to the estimates in
Shapiro and Walker (2018).16

6.2.3 The Pareto shape parameter

Finally I estimate the Pareto shape parameter according to the Pareto tail cumulative distri-
bution function Pr{x > Xi,s} = (bi,s/Xi,s)

θs/(σs−1) for Xi,s ≥ bi,s. Taking logs gives:

ln(Pr{x > Xi,s}) = γ0,s + γ1,sln(Xi,s) + ϵi,s (36)

where Xi,s represents sales. I estimate the coefficient γ1,s and the Pareto shape parameter is
in turn given by θs = γ1,s(1 − σs). Only firms above the 90th percentile of sales within each

15Antràs et al. (2017) estimate the elasticity of 3.85 for the US, while Hsieh and Ossa (2016) estimate the
median elasticity of 6.1 for China. The cross-sector mean estimate of 6.07 falls within this range. Alternative
estimates using China’s trade data with the Soderbery (2015) method developed on Feenstra (1994) and Broda
and Weinstein (2006) give the mean elasticity of 5.72, which is also close to the baseline estimates. I will later
use the alternative elasticity of substitution σ independent of the pollution elasticity α to substitute the baseline
parameters in the counterfactual section and show that the results are qualitatively robust.

16In Shapiro and Walker (2018) the elasticity of substitution is highest for Coke refined petroleum, and nuclear
fuels sector (8.18), while the elasticity of substitution is smallest for Medical, precision, and optical products sector
(2.89), with a cross-sector mean of 4.76.
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sector are used because the Pareto distribution best fits the right tail of the firm distribution.
The results are in column (5) of Table 6. The estimates support the assumption of the model
that θs > (σs − 1)(1− αs).

6.3 Recovering historical values of key variables

There are three main components in the model that may generate counterfactual pollution
emission outcomes if they were not taken at their actual historical values. The components are
environmental regulation, expenditure shares, and market competitiveness of home and foreign.
Next I recover the historical values of these variables to prepare for the counterfactual analysis.

6.3.1 The environmental regulation

The first set of historical values to recover is the environmental regulation measured by model-
implied pollution tax, which is indicative on its own. It is useful to clarify that the pollution tax
is an exogenous variable in the model. Since there is not a clear mapping between actual policies
and this variable, I need to retrieve it from the behavior of other endogenous variables that react
to the tax. One of the equations pinning down general equilibrium delivers an expression that
can be easily quantified using the available data. The pollution tax is measured by the following
equation:17

t̂o,s =
M̂ e

o,sŵo

Ẑo,s

(37)

The implicit pollution tax is t̂o,s and Ẑo,s is the change in pollution of origin country o in sector
s. M̂ e

o,s and ŵo are changes in firm entry and factor prices, respectively. The pollution tax
implied by the model is determined by the change in the mass of firm entry, factor price and
pollution emission, which reflects the overall level of regulation on SO2. Equation (37) contrasts
the technique effect from the sector-level decomposition exercise, which is the change in pollu-
tion per unit of real output within sector Ẑo,s/(R̂o,s/P̂o,s). In other words, the decomposition
exercise does not consider the price index, which may be influenced by trade, productivity, and
environmental regulations. The recovered trend is shown in Figure 7.

The dirty industries are those with pollution elasticity above the sector mean and the clean
industries are below the mean pollution elasticity.18 The two groups of industries are weighted
by baseline industry revenue. The figure retrieved from the model uses revenue data from the
World Input-Output Tables (WIOT). I also plot the implied pollution tax for other pollutants
in Figure A.11 and it seems that the implicit pollution taxes for the other pollutants are also
relatively high and the magnitude does not necessarily increase with mean pollution elasticity
α.

There is not a direct pollution tax for firms since local governments may implement policies
at different times and with various reduction details. One can think of the pollution tax as a
measure of shadow price of pollution. According to the State Council, SO2 pollution charges
were to be doubled within three years since 2007, from 0.63 yuan per kg to 1.26 yuan per
kg. Figure 7 reflects the change in pollution tax with similar magnitudes, especially for dirty
industries, which is reassuring that the model-implied measure of pollution tax is not far from
the goal of the policy.

Alternatively, I can divide implicit pollution tax into high regulation provinces and low
regulation provinces. The province regulation level is measured by change in SO2 emission

17Equation (23) of Shapiro and Walker (2018), where the derivation can be found in their appendix.
18The dirty industries include Manufacture of paper and paper products, Processing of petroleum, coking

and nuclear fuel, Manufacture of raw chemical materials and chemical products, Manufacture of chemical fibers,
Manufacture of non-metallic mineral products, Smelting and pressing of ferrous metals, and Smelting and pressing
of non-ferrous metals. The rest are relatively clean industries.
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Figure 7. Implicit pollution tax of SO2 (model-implied)

Note: Dirty industries have pollution elasticity αs above average, while clean industries are below average,

weighted by baseline output of each industry.

divided by change in output before and after the 11th Five-Year Plan between 2005 and 2010.
Provinces with high regulation are below the average value and provinces with low regulation
are above average.19 The province pollution tax is obtained by using the implicit pollution
tax by industry from the model and take industry output share in the initial year as weights.
The results are plotted in Figure A.12. High regulation provinces face higher level of implicit
pollution tax compared to low regulation provinces and the gap slowly widened over the sample
period.

6.3.2 Expenditure share

The second set of historical values to recover is expenditure share. The equation to derive
expenditure shares is as follows:

β̂∗d,s =

∑
oX

′
od,s/

∑
o,sX

′
od,s∑

oXod,s/
∑

o,sXod,s
(38)

which is the sectoral expenditure share of a country’s expenditure on sector s in a counterfactual,
divided by the baseline year value. Here I use data from theWIOT and convert the ISIC Revision
4 sectors to CIC 2017 2-digit industries. Whenever there are multiple sectors with the CIC 2017
codes linked to the same ISIC Revision 4 sector, I assign equal weights to the number of sectors
linked. The retrieved values are shown in Figure 8. The definition of dirty and clean industries
are the same as above, where dirty industries have above average pollution elasticities and clean
industries below average. The two groups are aggregated using unweighted mean. The rest
of the world apart from China is aggregated into Foreign as one destination. In both panels,
the change in dirty industries are higher in general than clean industries. There are drops in
expenditure shares of dirty industries after the 2008 financial crisis and increases in expenditure
shares of clean industries.

19Provinces with low regulation include Hebei, Shanxi, Liaoning, Shandong, Henan, Guangxi, Chongqing,
Sichuan, Guizhou, Shaanxi, and Ningxia. The rest are with relatively high regulation.
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6.3.3 Market competitiveness

The third group of historical values to recover are foreign and Chinese market competitiveness.
Here, Chinese “competitiveness” refers to the ability of Chinese firms to sell to the international
market a wide range of varieties at relatively lower prices, and vice versa for foreign compet-
itiveness. Mainly, competitiveness combines productivity, environmental regulation and trade
costs for both foreign and domestic countries. Here foreign competitiveness is taken as a single
variable because it does not provide further explanations to domestic pollution, and I also lack
the data on each single component of foreign competitiveness. The expressions are:

Γ̂od,s = (1/b̂o,s)
−θs(τ̂od,s)

−θs/(1−αs)(f̂od,s)
1−θs/(σs−1)(1−αs)(t̂o,s)

−αsθs/(1−αs) (39)

=
λ̂od,s

M̂ e
o,sŵ

−θs
o

, o ̸= China (40)

Γ̂od,s = (1/b̂o,s)
−θs(τ̂od,s)

−θs/(1−αs)(f̂od,s)
1−θs/(σs−1)(1−αs) (41)

= t̂
αsθs
1−αs
o,s

λ̂od,s

M̂ e
o,sŵ

−θs
o

, o = China (42)

where the endogenous variables are nominal wage ŵo, and firm entry M̂ e
o,s. λ̂od,s is the share of

country d’s expenditure on sector s that is purchased from country o.
The historical values of the Foreign and Chinese wages, firm entry and market competi-

tiveness in changes are shown in Figure 8. The wage data are retrieved from the model. The
nominal wages for countries outside of China dropped gradually after 2000 to reach a level of
80% its initial value. In contrast, the nominal wages for China increased to over 300% of their
level in 2000.

To compare the foreign wages in the cases of China and the US, Shapiro and Walker (2018)
report that the US nominal wage in 2008 from the model is around 70% of the 2000 level, while
the wage in the rest of world grew by less than 20%. In the case of China, the US account
for a large weight of the foreign wages, which corresponds to the model-implied mild decline in
foreign wages. The rapid wage increase of China contributes to the wage growth of the rest of
world in the US case.

To verify the Chinese wage changes solved from the model, I compare the results to wage data
from other sources. One source of the Chinese wages is the average wage bill from financial
accounts of industrial firms in the EPS database, weighted by the annual firm employment.
Figure A.13 shows that by the end of 2012, the average wage was over 250% of the 2000 level.
The caveat is that the data from 2008 to 2010 are missing, and many firms did not report
their payroll information. Another source of the Chinese wage data is the Urban Household
Survey (UHS) conducted by the National Bureau of Statistics (NBS), where the manufacturing
workers in urban areas were asked about their earnings. Figure A.13 plots the trend, which
shows that manufacturing wages increased to over 450% of the 2000 level. The alternative
sources of Chinese industrial wages are not perfect substitutes of the retrieved values from the
model, however, they offer a reasonable range where the endogenous values lie in between.

The firm entry effects reflect the changes in expenditure shares. Both China and Foreign
witnessed a slight drop at the beginning of the 21st century and then grew rapidly until 2008
when the global financial crisis hit and firm entry dropped sharply before recovering. However,
clean industries in China seem to be less affected by the crisis since they experienced a much
milder shock.

The equivalent of firm mass in the data can be the relative number of firms by industry
across time. Figure ?? plots the correlation between the two measures and shows that they are
positively correlated. One caveat is that the firms from the EPS data are relatively large firms
above certain threshold and are not the universe of firms. So the map to firm mass from the
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model may not be exact. However, they are positively correlated, which reflects that the model
captures the variances across industry and time.
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Figure 8. Historic values

Note: Dirty industries have pollution elasticity αs above average, while clean industries are below average,

unweighted mean.
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7 Counterfactuals

In this section, I run counterfactual analysis on what the pollution emission would look like
if I take the trade, pollution emissions and production from the initial year 2000 and add
the historical values of foreign and domestic competitiveness, environmental regulation and
expenditure shares {Γ̂∗

od,s, t̂
∗
o,s, β̂

∗
o,s} one at a time, keeping the other components at their 2000

values. The purpose of the exercise is to disentangle the contribution of each channel to the
total level of SO2 pollution emissions in a general equilibrium framework.

The baseline counterfactual results are plotted in Figure 9. The blue solid line represents
the actual data when all variables follow their historical values. The red dashed lines represent
the contribution of Foreign competitiveness, Chinese competitiveness, Chinese regulation and
Chinese expenditure share respectively, keeping the other variables at their initial levels in
year 2000. The figure shows that Chinese competitiveness would greatly increase total SO2

pollution emission level, while Chinese regulation would drive down emissions by more than
50%. In contrast, foreign competitiveness and Chinese expenditure share do not seem to affect
the pollution levels by much.

7.1 Baseline results
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Figure 9. Counterfactual Chinese manufacturing pollution emissions

In addition to the baseline counterfactual results, I extend the exercises of Shapiro and Walker
(2018) and further decompose the Chinese competitiveness according to equation (41) into sector
productivity measured by the Pareto location parameter b̂o,s, and export tariff τ̂od,s which is
the variable cost of trade. The remaining part of the Chinese competitiveness is the fixed entry
cost f̂o,s, which is the residual and hard to measure directly. Therefore, I do not look at the
counterfactual with respect to fixed entry cost. In this way, one can further disentangle the
role of the sub-components of Chinese competitiveness in pollution level. This would also link
the model to the regression analysis and allow me to check the pollution response to policy
interventions.

The Pareto location parameter bo,s can be obtained along with the estimation of the Pareto
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shape parameter θs.
20 I use effective applied (AHS) simple average export tariff data for China

from the World Bank’s WITS dataset at 4-digit ISIC Revision 3 level and convert to CIC 2-digit
level to account for tariff τod,s. The retrieved historical values of the additional set of variables
are shown in the Figure A.15.21 I can then look at counterfactual pollution emissions if only
each of these sub-series follows the historical values. The additional counterfactual results are
plotted in Figure 10. The blue dashed lines show that the tariff changes would reduce the
total SO2 pollution emission level by the most among other channels after 2004, later surpassed
by Chinese regulation after 2008. While the sector productivity would reduce pollution level,
however, the magnitudes are moderate.
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Figure 10. Additional counterfactuals (decomposed Chinese expenditure share)

In the benchmark counterfactual results, I aggregate firm-level pollution merged with pro-
duction information used for parameter estimates, so there is a dip in actual total pollution level
in 2009. Alternatively, I can aggregate firm-level pollution without matching the production
information and apply the estimated parameters to all firms with emission records. Another
approach is to use yearbook pollution data, which includes the total amount of emission in each
2-digit CIC industry. The results are reported in Figure A.17a and Figure A.17b, respectively.
The counterfactual pollution levels are qualitatively similar, though the effect of tariff is more
pronounced than in the benchmark.

7.2 Other counterfactuals

This section explores other counterfactual results including the effect of a single channel, the
wage effects and pollution intensity outcomes.

20Effectively, the Pareto location parameter bo,s is the lower bound of the productivity distribution. Al-
ternatively, I could substitute bo,s with sector average total factor productivity weighted by firm sales. The
counterfactual results in Figure A.16 show a bigger effect in reducing total pollution emissions level.

21The retrieved historical values of firm productivity from the production function estimation are very similar
to sector productivity from Pareto distribution in terms of both trend and magnitude.
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7.2.1 Effect of a single channel

The counterfactual effects of a single channel (e.g. flat pollution tax or no environmental
policy), computed by keeping one variable at the initial value, while the other variables follow
their historical values are shown in Figure A.18. If the Chinese regulation is constant, the
total pollution level by 2012 would be 300% of the initial level in year 2000, which is much
higher than the actual pollution level at 162%. If the level of trade liberalization is kept at
the original level, SO2 pollution would have increased to over 200%. In contrast, if Chinese
market competitiveness stayed constant, pollution would be lower by 50%. If foreign market
competitiveness stayed constant, pollution would also be slightly lower than the actual level.
The effects of productivity and expenditure shares are relatively less important.

7.2.2 Wage effects

One can solve for the nominal wages relative to the levels in year 2000 under each counterfac-
tual scenario from the set of equations under the equilibrium conditions (30) and (31). The
counterfactual effects on home and foreign wages are depicted in Figure A.19. The blue solid
lines represent the historical wages retrieved from the actual data. Among all the channels,
Chinese competitiveness is the main driver of home and foreign wages, while the other channels
have marginal effects on wages.

7.2.3 Pollution intensity

In terms of pollution intensity, Figure A.20 shows that it dropped over the period to less than
50% of the initial value, corresponding to the pattern in the introduction. All the factors
examined decrease pollution intensity proportional to their effects on pollution level. In line
with the comparative statics propositions, productivity, pollution tax and trade liberalization
help reduce pollution intensity, and each channel alone would decrease pollution intensity to
the level of around 30%, 15% and 20% of the base year respectively by the end of 2012.

7.3 Magnitudes of model and data

In this section, I take the data and the estimates from the regressions as external validity of
the model predictions. Specifically, I look at the “elasticity” of pollution intensity to trade
liberalization and environmental regulation, which are the main forces to reduce pollution in
the model.

7.3.1 Trade liberalization

Recall that in Table B.9 with the instrument variable specification, a 1% point reduction in
input tariff would reduce firm SO2 intensity by 1.7% to 2.1% on average. I then regress the
industry-specific counterfactual pollution intensity from the model on average industry tariff,
the result is that 1% tariff cut would reduce pollution intensity by 1.4% to 1.9% (Table B.20),
which is close to the estimate from the regressions.

7.3.2 Environmental regulation

Table 4 shows that if the province SO2 pollution regulation stringency (yuan/kg) increases by
1%, firm pollution intensity would decrease by 0.07% to 0.09%. Taking the implied pollution
tax to approximate the pollution regulation, I then regress the industry-specific counterfactual
pollution intensity on the average pollution tax from the model. Table B.20 shows that 1%
increase in the pollution tax would reduce the pollution intensity by roughly 0.13% to 0.16%,
which is larger than the estimate from the DiD regressions.
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One caveat is that the DiD analysis examines the policy difference across provinces during
the 11th Five-Year Plan, while there might be other local policies. Also, the response of pollution
intensity to regulation identified in the regressions is across provinces, but the model exploits
variance across industries, which may be different from regional differences.

7.3.3 Economic cost of environmental regulation

According to the report by the Ministry of Environment Protection (MEP), the economic cost
of SO2 emission was 20,000 yuan per ton in 2005.22 The baseline counterfactual pollution level
of Chinese environmental regulation is approximately 50% of the initial level in 2000, while the
actual pollution level by 2012 is 162% of the initial level, which means that the net effect of
environmental regulation is 112% of SO2 emission reduction in manufacturing industries. The
manufacturing SO2 emission in 2000 was 5.7 million tons according to the China Environmental
Statistical Yearbook, which indicates that the environmental policy reduced 6.384 million tons
of SO2 emission (5.7 million tons ×112%), equal to 127.68 billion RMB in 2005 (6.384 million
tons × 20,000RMB/ton), roughly 0.68% of annual GDP.23 The equivalent in 2021 is 218.18
billion RMB, or 33.83 billion USD (at the exchange rate 1 USD=6.45 RMB).24

7.4 Sensitivity analysis

I conduct a series of sensitivity analysis on the main counterfactuals in this section. The first row
of Table 7 presents the actual change in SO2 pollution emissions between 2000 and 2012, setting
the level in 2000 to 100. The value means China’s manufacturing SO2 pollution emissions were
162.180 percent of the 2000 level in 2012. The second row shows the main estimates where each
column corresponds to a counterfactual in the baseline Figure 10. Again, Chinese environmental
regulation alone would reduce total pollution level by approximately one half, followed by tariff
cost reduction which would decrease 36% of pollution emissions, while technology/productivity
and expenditure shares contribute only slightly to pollution reduction.

One concern about the current results is that the parameters are essentially based on the
estimation of pollution elasticity α. To alleviate the potential bias in parameter estimation,
I use an alternative approach to estimate the elasticity of substitution σ independently from
trade data using the method from Soderbery (2015), which is an improvement based on Feenstra
(1994) and Broda and Weinstein (2006). The counterfactual results are summarized in row 3
of Table 7. Compared to the main counterfactuals, this exercise provides very similar results,
except that the change in tariff is slightly less effective in reducing SO2 pollution level.

Rows 4 and 5 explore counterfactuals when the Pareto shape parameter θ of productivity
distribution is estimated using alternative cutoffs at the right tail. The model is not sensitive
to changes in parameter θ since counterfactuals change only marginally. Rows 6 and 7 explore
sensitivity to changes in the estimated pollution elasticity α. The counterfactuals are a bit more
volatile to changes in parameter α shown in the table, but remain qualitatively stable.

Regarding regulation, row 8 presents partial equilibrium where there is no change in factor
prices or firm entry: ŵo = M̂ e

o,s = 1. In this case, market competition and expenditure shares
do not affect pollution emissions and only environmental regulation consistently decreases total
pollution emissions by almost one half.

22The estimate by the European Commission for EU25 Member States is 5,600 EUR at a lower bound in
2005, which is equivalent to 53,200 RMB per ton of of SO2 at the exchange rate of 1 EUR=9.5 RMB in 2005.
However, the GDP per capita in EU25 Member States was significantly higher than China, and GDP per capita
is positively related to the economic cost of pollution.

23The GDP of China in 2005 was 18.73 trillion RMB.
24The GDP deflator is 68 in 2005 and 116.2 in 2021 with base year 2015, according to the World Bank.
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Table 7. Sensitivity analysis

Foreign
competitiveness

Chinese
competitiveness

Chinese
expenditure

shares

Chinese
environmental
regulation

Tariff Technology/
productivity

1. Actual change 162.180
2. Main estimate 124.857 294.114 94.152 49.663 63.566 98.361
3. σ: Feenstra 124.289 292.573 94.124 49.768 73.522 96.444
4. θ: top 25 % 124.400 289.512 94.136 49.800 71.307 95.794
5. θ: top 50 % 124.250 289.732 94.120 49.916 72.071 93.669
6. α: × 0.5 124.443 285.016 94.139 50.323 71.442 97.976
7. α: × 2 125.592 343.825 94.181 44.728 75.549 99.519
8. Partial equilibrium 100.000 100.000 100.000 50.815 100.000 100.000

7.5 Counterfactual policies

In this section, I explore the counterfactual effects of alternative policies regarding pollution
tax and tariff cost. Recall from Figure 7 that the pollution tax faced by dirty industries is
smaller than clean industries. Suppose all industries face the same level of pollution tax so that
they are treated equally by the policy. Figure A.21a displays the scenario when all industries
receive the same level of environmental regulation so that they face uniform pollution tax. The
counterfactual shows that Chinese environmental regulation would further decrease pollution
in 2012 by 3% of the 2000 level. If the implicit pollution tax were twice of the actual level,
SO2 emissions would further decrease to 25% of the initial level. By contrast, if the implicit
pollution tax were half of the baseline level, SO2 would not effectively decrease at the end of
the period because the regulation is too weak to be effective.

One can also examine the counterfactual pollution emissions due to alternative tariff rates.
Figure A.21b shows that if tariff costs were reduced by half, SO2 emissions would further
decrease to 38% of the initial level. However, if the tariff costs were doubled, the emission level
would instead increase by 30%. The results indicate that trade conflicts such as the US-China
trade war would have inverse effects on pollution emissions. As tariff cost increases, firms are
left with little room to abate pollution, and as a result, emission level will rise significantly.

7.6 Counterfactuals for other pollutants

Apart from SO2, I reproduce the counterfactual analysis with regard to other pollutants fol-
lowing the same procedure in the model. The comparison between other pollutants to SO2

may provide insights about the spillover of SO2 regulations on other airborne pollutants. The
analysis on water pollutants such as COD (chemical oxygen demand), which was also targeted
by the environmental policy during the 11th Five-Year Plan can offer comparable assessment on
the effect of policies. The counterfactual exercises are summarized in Figure A.22. Reassuringly,
the counterfactual trends of COD are close to those of SO2, showing that the environmental
policies affect targeted pollutants in a similar way. Firms are more pollution efficient and emit
less under the environmental policies. In terms of other air pollutants, environmental regula-
tions would have reduced NOx (nitrogen oxides) emissions by around 50%, while almost all of
smoke dust emissions could be reduced. These results indicate that there is spillover of environ-
mental policies on air pollutants that are not directly targeted. This could be achieved through
pollution abatement investment and end-of-pipe filtering equipment. For water pollutants, the
effectiveness of pollution policies is smaller in magnitude than air pollutants, probably because
the pollutants are more likely to be carried down the rivers and into the water bodies across
regions, which makes it harder to regulate locally. However, tariff reduction would become more
useful to reduce emissions in later years.
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8 Conclusion

The relationship between economic growth, international trade and pollution has been under
debate for years. However, studies that comprehensively disentangle the primitive drivers of
pollution level have been rare, especially in developing countries where more economic growth
and potentially more pollution are expected. In this paper, I look into the problem by first
combining China’s firm-level data on financial statistics, trade and pollution information. I
find that large firms pollute more but are less pollution intensive, so are firms that participate
in international trade. Higher TFP and more stringent regulations are associated with lower
pollution. Policies such as international trade liberalization and environmental regulation can
reduce the emission intensity of firms. I then perform both industry-level and firm-level de-
compositions and find that within sector firm heterogeneities are important in explaining the
changes in pollution levels.

To complement the evidence from the data, I follow the quantitative approach of Shapiro and
Walker (2018) to structurally estimate the contributions of each possible channel. The model
applies insights from environmental economics to the international trade literature and features
heterogeneous firms that pay a pollution tax and decide on pollution abatement costs under
monopolistic competition in open economies. The parameters can be estimated using firm-
level data on pollution and production. The counterfactual exercises show that environmental
regulation is very effective in reducing the total SO2 emission level that the policy alone would
reduce pollution by over one half, with model-implied pollution tax significantly increased. In
contrast, China’s market competitiveness would greatly push up total pollution and I further
single out trade costs measured by tariffs and productivity improvement due to technology
upgrading. The results show that tariff cuts from trade liberalization is the force second to
environmental regulation to drive down pollution level. Meanwhile, productivity alone would
reduce pollution only moderately. Finally, I explore some alternative environmental policies
and tariff costs to derive the counterfactual emission outcomes.

The findings of this paper highlight the importance of environmental policies in reducing
pollution emissions. Government regulations can be crucial to keep a low level of pollution while
sustaining economic growth. This is not only true for industrialized countries (e.g. Shapiro and
Walker, 2018) but also for developing economies (e.g. Burgess et al., 2019). The analysis could
potentially be extended to pollutants other than what have been discussed in this paper such
as green house gases (GHG) or carbon dioxide (CO2) and alternative environmental policies
where data are available. It would also be interesting to explore the relationship between
environmental regulations, intermediate inputs and product markups in future work.
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Appendix

A Additional figures

(a) Export value and quantity (b) Revenue and physical emission intensities

Figure A.1. Export emission intensities

Notes: The export data come from the customs, the pollution data come from the Ministry of Environment

Protection (MEP).

Figure A.2. SO2 emissions and real output (different deflators)

40



(a) SO2 (b) COD

(c) NOx (d) NH3-N

(e) Smoke dust (f) Waste water

Figure A.3. Pollution emissions and real output- (other pollutants)

Notes: The pollutants include sulfur dioxide (SO2), nitrogen oxides (NOx) and smoke dust for air pollution,

chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and waste water for water pollution. The data are

not available for NOx before 2006 and for NH3-N before 2001.

41



(a) Pollution (b) Pollution+ASIF

(c) Pollution+ASIF+Customs

Figure A.4. Number of firm-level observations 2000-2012
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(a) Average output and input tariffs

(b) Input tariffs (simple average)

Figure A.5. Tariff levels and tariff changes (1997 input-output table)
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(a) 4-digit deflator (b) Revenue not deflated

Figure A.6. Industry-level SO2 emission decomposition (alternative deflators)
Note: The sample with 4-digit deflator covers 1998-2010 due to compatibility of deflators.

(a) Revenue shares (b) Cost shares

Figure A.7. Industry-level SO2 emission decomposition (alternative shares)
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Figure A.8. Firm-level SO2 emission intensity decomposition (by industry)

(a) Abatement cost in industrial waste gas (b) Abatement cost from model

Figure A.9. Abatement cost data and model
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(a) Shares (b) Values

Figure A.10. Correlation between abatement cost and emission reduction

Note: Each point represents industry-year level abatement cost from the model on the horizontal axis and the

emission reduction from the data on the vertical axis.
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(f) Waste water
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Figure A.11. Implicit pollution tax across pollutants

Note: The pollutants include sulfur dioxide (SO2), nitrogen oxides (NOx) and smoke dust for air pollution, chem-

ical oxygen demand (COD), ammonia nitrogen (NH3-N) and waste water for water pollution. Dirty industries

have pollution elasticity αs above average, while clean industries are below average, weighted by baseline output

of each industry. The data are not available for NOx before 2006 and for NH3-N before 2001.
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Figure A.12. Implicit pollution tax by province

Note: High regulation provinces have below average change in SO2 cap over change in GDP between 2005 and

2010, while high regulation provinces are above average, weighted by initial year output of each province.

Figure A.13. Chinese wages
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Figure A.14. Correlation between firm number and firm mass
Note: Each point represents industry-year level firm number.
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(a) Log sector productivity (b) Log firm productivity

(c) Export tariff

Figure A.15. Historic values of additional variables

Note: Dirty industries have pollution elasticity αs above average, while clean industries are below average,

unweighted mean.
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Figure A.16. Additional counterfactual with weighted average sector productivity

(a) All polluting firms

2000 2002 2004 2006 2008 2010 2012

Year

0

50

100

150

200

250

300

2
0

0
0

=
1

0
0

Actual data (all)

Foreign competitiveness only

Chinese competitiveness only

Chinese regulation only

Chinese expenditure share only

Tariff only

Technology/Productivity only

(b) Yearbook pollution
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Figure A.17. Additional counterfactuals with alternative pollution data
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Figure A.18. Counterfactual Chinese manufacturing pollution emissions (single channel)
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(b) Foreign wage
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Figure A.19. Counterfactual effects on home and foreign wages
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Figure A.20. Counterfactual Chinese manufacturing pollution intensities

(a) Pollution regulations
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Figure A.21. Counterfactual SO2 emissions of alternative policies
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(a) SO2
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(b) COD
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(c) NOx
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(d) NH3-N
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(e) Smoke dust
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(f) Waste water
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Figure A.22. Counterfactuals of other pollutants

Note: The pollutants include sulfur dioxide (SO2), nitrogen oxides (NOx) and smoke dust for air pollution,

chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and waste water for water pollution. The data are

not available for NOx before 2006 and for NH3-N before 2001.

54



B Additional tables

Table B.1. Top manufacturing industries of SO2 emissions

Code 2-digit CIC name Emission share

30 Non-metallic mineral products industry 22%
31 Ferrous metal smelting and rolling industry 20%
26 Chemical raw materials and chemical products man-

ufacturing
15%

32 Non-ferrous metal smelting and calendering industry 11%
25 Petroleum processing, coking and nuclear fuel pro-

cessing industries
8%

22 Paper and paper products industry 6%
15 Beverage manufacturing 4%
17 Textile industry 4%
13 Agricultural and food processing industry 2%

Notes: CIC stands for China industrial classification. Manufacturing industries that

account for more than 1% of SO2 emissions are listed. The data coverage is 2000-2012.

Table B.2. Summary statistics of all firms

Variable Obs Mean Std. Dev. Min Max

Exporter 1,207,342 0.135 0.341 0 1
Importer 1,207,342 0.101 0.301 0 1
log sales 1,165,399 7.301 1.919 2.789 12.454
logSO2 877,406 9.580 1.899 3.738 14.353
logSO2int 854,355 2.360 2.223 -8.641 11.290

Notes: logSO is log SO2 emission (kg), logSO2int is log SO2 emis-

sion(kg) per unit of output value (1,000 yuan). Exporter and

Importer are exporter and importer dummies. log sales represents

log of sales in 10,000 yuan. log sales, logSO and logSO2int are

trimmed at the top and bottom 1% to rule out the influence of out-

liers.

Table B.3. Summary statistics of importers/exporters

Variable Obs Mean Std. Dev. Min Max

logSO2 116,747 9.421 2.224 2.485 15.011
logSO2int 85,124 0.356 2.340 -10.523 9.734
logExport 168,672 14.545 2.223 7.746 19.612
logImport 125,785 13.606 2.883 5.375 19.891
Labor 84,449 8.762 22.830 0.310 80.190
TFP 64,049 0.252 0.960 -11.421 9.241
FOE 142,316 0.163 0.369 0 1
SO2cap 178,747 83.377 44.386 0.200 160.200

Notes: logSO2 is log SO2 emission (kg), logSO2int is log SO2

emission(kg) per unit of output value (1,000 yuan). logExport and

logImport are export and import value in logs. Labor is the number

of employment in hundreds. TFP is firm total factor productivity.

FOE is foreign ownership status dummy. SO2cap is the provincial

SO2 regulation cap in 10,000 tons by 2010. logExportit, logImportit
and Laborit are trimmed at the top and bottom 1% to rule out the

influence of outliers.
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Table B.4. SO2 pollution and firm characteristics (all firms 4-digit industry)

(1) (2) (3) (4)
logSO2 logSO2 logSO2int logSO2int

Exporter 0.249*** -0.090*** -0.447*** -0.090***
(0.008) (0.007) (0.008) (0.007)

Importer 0.309*** -0.226*** -0.741*** -0.226***
(0.009) (0.009) (0.010) (0.009)

log sales 0.501*** -0.499***
(0.001) (0.001)

Observations 798,660 677,667 677,667 677,667
R-squared 0.291 0.451 0.460 0.574
Sector FE ✓ ✓ ✓ ✓
City FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

Notes: The sample covers 2000-2010 due to compatibility of deflators.

Standard errors in parentheses. * significant at 10%, ** significant at

5% , *** significant at 1%.

Table B.5. SO2 pollution and firm characteristics (importers/exporters 4-digit industry)

(1) (2) (3) (4) (5) (6) (7)
logSO2 logSO2 logSO2int logSO2int logSO2int logSO2int logSO2int

logExport 0.142*** 0.078*** -0.042*** -0.047*** -0.015* -0.013* -0.013*
(0.005) (0.006) (0.005) (0.007) (0.007) (0.007) (0.007)

logImport 0.031*** 0.000 -0.130*** -0.120*** -0.096*** -0.092*** -0.091***
(0.004) (0.005) (0.004) (0.005) (0.006) (0.006) (0.006)

Labor 0.047*** 0.000 0.006*** 0.005*** 0.005***
(0.001) (0.001) (0.001) (0.001) (0.001)

TFP -0.773*** -0.773*** -0.773***
(0.016) (0.016) (0.016)

FOE -0.338*** -0.339***
(0.045) (0.045)

SO2cap 0.013***
(0.005)

Observations 51,141 26,331 41,645 25,706 18,357 18,357 18,357
R-squared 0.389 0.447 0.465 0.454 0.522 0.524 0.524
Sector FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
City FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: The sample covers 2000-2010 due to compatibility of deflators. Standard errors in parentheses. *

significant at 10%, ** significant at 5% , *** significant at 1%.
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Table B.6. SO2 pollution and firm characteristics (all firms with firm FE)

(1) (2) (3) (4)
logSO2 logSO2 logSO2int logSO2int

Exporter 0.016** -0.018*** -0.092*** -0.018***
(0.007) (0.007) (0.007) (0.007)

Importer 0.049*** 0.018** -0.042*** 0.018**
(0.007) (0.007) (0.008) (0.007)

log sales 0.323*** -0.677***
(0.002) (0.002)

Observations 829,220 806,958 806,958 806,958
R-squared 0.810 0.820 0.838 0.872
Firm FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

Notes: Standard errors in parentheses. * significant at 10%, ** signif-

icant at 5% , *** significant at 1%.

Table B.7. SO2 pollution and firm characteristics (importers/exporters with firm FE)

(1) (2) (3) (4) (5) (6)
logSO2 logSO2 logSO2int logSO2int logSO2int logSO2int

logExport 0.045*** 0.036*** -0.054*** -0.055*** -0.045*** -0.045***
(0.005) (0.008) (0.007) (0.010) (0.011) (0.011)

logImport 0.011*** 0.004 -0.033*** -0.036*** -0.050*** -0.050***
(0.004) (0.006) (0.005) (0.007) (0.008) (0.008)

Labor 0.010*** -0.003 -0.006** -0.006**
(0.002) (0.002) (0.003) (0.003)

TFP -0.732*** -0.732***
(0.018) (0.018)

SO2cap -0.007
(0.011)

Observations 50,836 22,357 37,066 21,768 14,531 14,531
R-squared 0.856 0.846 0.834 0.825 0.841 0.841
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: Standard errors in parentheses. * significant at 10%, ** significant at 5% , *** significant

at 1%.
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Table B.8. Summary statistics of trade liberalization

Variable Obs Mean Std. dev. Min Max

logSO2int 641,278 2.355 2.175 -8.641 11.290
WTO 891,669 0.761 0.427 0 1
tariff1998savg.output 791,849 18.989 11.221 2.590 65.000
tariff1998wavg.output 791,849 19.527 14.132 3.700 107.060
tariff1998savg.input 866,255 9.408 3.796 1.443 29.893
tariff1998wavg.input 866,255 9.734 4.298 1.468 29.419

∆t̂ariff savg.output 1,126,273 6.192 2.350 1.289 18.131

∆t̂ariffwavg.output 1,126,273 6.525 3.218 0.709 22.643

∆t̂ariff savg.input 1,126,273 3.719 1.076 0.922 10.176

∆t̂ariffwavg.input 1,126,273 4.361 1.255 1.249 10.541
log sales 861,545 7.300 1.888 2.789 12.448

Notes: logSO2int is log SO2 emission (kg) per unit of output value (1,000

yuan). log salesit is log of firm sales in 1,000 yuan. WTO is a binary indicator

of China’s entry to the WTO, which is equal to 1 if the year is after 2001 and

0 otherwise. “savg” and “wavg” represent simple average and weighted average

tariffs respectively.

Table B.9. Impact of trade liberalization on SO2 pollution intensity (tariff changes)

logSO2int (1) (2) (3) (4) (5) (6)

∆t̂ariffsavg.input ×WTO -0.021*** -0.020***
(0.004) (0.004)

∆t̂ariffwavg.input ×WTO -0.017*** -0.018***
(0.003) (0.003)

∆t̂ariffsavg.output ×WTO -0.005*** -0.002
(0.002) (0.002)

∆t̂ariffwavg.output ×WTO -0.003*** -0.001
(0.001) (0.001)

log sales -0.684*** -0.684*** -0.682*** -0.682*** -0.682*** -0.682***
(0.006) (0.006) (0.007) (0.007) (0.007) (0.007)

Observations 572,631 572,631 530,643 530,643 530,643 530,643
Adj. R-squared 0.845 0.845 0.847 0.847 0.847 0.847
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓ ✓ ✓ ✓
City-Year FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: Standard errors in parentheses, clustered at the industry-year level. “savg” and “wavg” represent simple

average and weighted average tariffs respectively. * significant at 10%, ** significant at 5% , *** significant at

1%.
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Table B.10. First-stage regressions of tariffs

(1) (2) (3) (4)
tariffsavg.input tariffwavg.input tariffsavg.output tariffwavg.output

tariff1998savg.input 0.649***
(0.001)

tariff1998wavg.input 0.637***
(0.001)

tariff1998savg.output 0.641***
(0.002)

tariff1998wavg.output 0.643***
(0.002)

log sales -0.011*** -0.004*** 0.040*** 0.075***
(0.001) (0.002) (0.006) (0.008)

Observations 770,843 770,843 699,579 699,579
Adj. R-squared 0.954 0.944 0.901 0.872
Firm FE ✓ ✓ ✓ ✓
City-Year FE ✓ ✓ ✓ ✓

Notes: Standard errors in parentheses. “savg” and “wavg” represent simple average and weighted

average tariffs respectively. * significant at 10%, ** significant at 5% , *** significant at 1%.

Table B.11. Impact of trade liberalization on SO2 pollution intensity (2SLS)

logSO2int (1) (2) (3) (4) (5) (6)

∆̂tariffsavg.input ×WTO -0.027*** -0.025***
(0.003) (0.003)

∆̂tariffwavg.input ×WTO -0.022*** -0.022***
(0.002) (0.003)

∆̂tariffsavg.output ×WTO -0.006*** -0.003***
(0.001) (0.001)

∆̂tariffwavg.output ×WTO -0.004*** -0.001
(0.001) (0.001)

log sales -0.682*** -0.683*** -0.681*** -0.681*** -0.680*** -0.680***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Observations 560,858 560,858 518,866 518,866 518,866 518,866
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓ ✓ ✓ ✓
City-Year FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: Standard errors in parentheses, clustered at the industry-year level. “savg” and “wavg” represent simple

average and weighted average tariffs respectively. * significant at 10%, ** significant at 5% , *** significant at

1%.
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Table B.12. First-stage regressions of tariffs (2SLS)

(1) (2) (3) (4)
∆tariffsavg.input ∆tariffwavg.input ∆tariffsavg.output ∆tariffwavg.output

×WTO ×WTO ×WTO ×WTO

tariff1998savg.input 0.488***
×WTO (0.001)
tariff1998wavg.input 0.498***
×WTO (0.001)
tariff1998savg.output 0.557***
×WTO (0.002)
tariff1998wavg.output 0.631***
×WTO (0.002)
K-P F-stat. 180,956 216,542 106,849 88,279

Notes: Standard errors in parentheses. The subscripts “savg” and “wavg” represent simple average and

weighted average tariffs respectively. * significant at 10%, ** significant at 5% , *** significant at 1%.

Table B.13. Impact of trade liberalization on SO2 pollution intensity (1997 input-output table)

logSO2int (1) (2) (3) (4) (5) (6)

tariff1998savg.input ×WTO -0.012*** -0.015***
(0.002) (0.002)

tariff1998wavg.input ×WTO -0.008*** -0.010***
(0.002) (0.002)

tariff1998savg.output ×WTO -0.003*** -0.000
(0.001) (0.001)

tariff1998wavg.output ×WTO -0.002*** -0.000
(0.001) (0.001)

log sales -0.683*** -0.683*** -0.681*** -0.681*** -0.680*** -0.681***
(0.006) (0.006) (0.007) (0.007) (0.007) (0.007)

Observations 572,631 572,631 530,643 530,643 530,643 530,643
Adj. R-squared 0.845 0.845 0.847 0.847 0.847 0.847
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓ ✓ ✓ ✓
City-Year FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: Standard errors in parentheses, clustered at the industry-year level. “savg” and “wavg” represent

simple average and weighted average tariffs respectively. * significant at 10%, ** significant at 5% , ***

significant at 1%.

Table B.14. Summary statistics of environmental regulation

Variable Obs Mean Std. dev. Min Max

logSO2int 641,278 2.355 2.175 -8.641 11.290
FY P 891,669 0.503 0.500 0 1
logTarget 891,669 12.308 0.620 10.594 14.747
log sales 861,545 7.300 1.888 2.789 12.448

Notes: logSO2int is the log of emission intensity (kg/10,000 yuan).

FY P is an indicator variable of the 11th Five-Year Plan which is

equal to 1 if the year is 2006 and afterwards, and 0 otherwise.

logTarget is the log SO2 emission target measured by the ratio of the

province GDP (yuan) to SO2 target level (kg) in 2010. log salesit is

log of firm sales in 1,000 yuan.
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Table B.15. SO2 emission caps and tariff shocks

SO2 cap 2000-2005

TariffShocksavg.input -1.293
(3.419)

TariffShocksavg.output 0.454
(1.677)

TariffShockwavg.input 0.107
(3.629)

TariffShockwavg.output -0.179
(1.693)

Observations 186 186
R-squared 0.0009 0.0002
Year FE ✓ ✓

Notes: Standard errors in parentheses. “savg” and “wavg” rep-

resent simple average and weighted average tariffs respectively. *

significant at 10%, ** significant at 5% , *** significant at 1%.

Table B.16. Firm-level SO2 emission intensity decomposition changes

Year Within Across Entry Exit Within+Across Entry+Exit Overall change

1999 -5.088 2.496 -0.183 -0.511 -2.592 -0.695 -3.286
(154.82%) (-75.96%) (5.57%) (15.56%) (78.86%) (21.14%)

2000 -2.353 -0.385 0.052 -1.087 -2.738 -1.036 -3.773
(62.35%) (10.20%) (-1.37%) (28.81%) (72.56%) (27.44%)

2001 -3.351 -0.368 0.857 -1.286 -3.719 -0.429 -4.148
(80.79%) (8.86%) (-20.65%) (31.00%) (89.65%) (10.35%)

2002 -4.160 -0.514 0.979 -1.358 -4.674 -0.379 -5.053
(82.33%) (10.18%) (-19.38%) (26.87%) (92.51%) (7.49%)

2003 -2.460 -2.903 1.407 -1.694 -5.363 -0.287 -5.650
(43.54%) (51.37%) (-24.90%) (29.98%) (94.91%) (5.09%)

2004 -9.244 3.593 1.492 -1.810 -5.651 -0.318 -5.969
(154.86%) (-60.19%) (-24.99%) (30.32%) (94.67%) (5.33%)

2005 -9.285 3.280 1.238 -2.057 -6.005 -0.818 -6.823
(136.08%) (-48.08%) (-18.15%) (30.14%) (88.01%) (11.99%)

2006 -7.095 0.559 1.052 -2.364 -6.537 -1.312 -7.849
(90.40%) (-7.12%) (-13.40%) (30.12%) (83.28%) (16.72%)

2007 -7.120 -0.062 0.779 -2.138 -7.182 -1.358 -8.540
(83.36%) (0.73%) (-9.13%) (25.03%) (84.09%) (15.91%)

2008 -10.150 2.612 0.766 -2.329 -7.539 -1.562 -9.101
(111.53%) (-28.70%) (-8.42%) (25.59%) (82.83%) (17.17%)

2009 -13.404 5.780 0.763 -2.725 -7.624 -1.961 -9.585
(139.84%) (-60.30%) (-7.97%) (28.43%) (79.54%) (20.46%)

2010 -14.373 6.493 1.000 -2.972 -7.880 -1.972 -9.851
(145.90%) (-65.91%) (-10.15%) (30.17%) (79.99%) (20.01%)

2011 -24.607 16.030 1.087 -2.377 -8.577 -1.290 -9.867
(249.39%) (-162.47%) (-11.02%) (24.09%) (86.93%) (13.07%)

2012 -23.371 15.234 1.229 -3.196 -8.137 -1.966 -10.104
(231.32%) (-150.78%) (-12.17%) (31.63%) (80.54%) (19.46%)

Note: The percentage changes of components relative to overall changes are in parentheses.
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Table B.17. Firm-level SO2 emission intensity decomposition levels

Year Within Across Continue Continue Continue
(within+across) +entry +entry+exit

1998 52.905 -38.949 13.956 - 14.468
1999 47.818 -36.453 11.365 11.693 11.181
2000 47.915 -37.272 10.643 11.782 10.695
2001 49.980 -40.517 9.463 11.606 10.320
2002 46.138 -37.702 8.436 10.772 9.415
2003 47.011 -39.600 7.410 10.512 8.817
2004 53.145 -46.139 7.006 10.308 8.498
2005 50.954 -44.548 6.406 9.701 7.644
2006 39.634 -34.068 5.567 8.983 6.619
2007 41.423 -36.275 5.148 8.065 5.927
2008 38.709 -34.108 4.600 7.695 5.367
2009 34.285 -30.166 4.119 7.607 4.882
2010 31.806 -28.190 3.616 7.588 4.616
2011 20.815 -17.301 3.514 6.978 4.601
2012 18.265 -15.131 3.135 7.560 4.364

Table B.18. Average pollution elasticity across pollutants

Pollutant SO2 NOx Smoke dust COD NH3-N Waste water

Mean pollution elasticity α 0.019 0.035 0.013 0.010 0.009 0.017

Note: The pollutants include sulfur dioxide (SO2), nitrogen oxides (NOx) and smoke dust for air

pollution, chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and waste water for water

pollution.

Table B.19. Abatement cost and emission reduction

Shares Values

Emission reduction (1) (2) (3) (4)

Abatement cost 0.508*** 0.871*** 3.333*** 2.965***
(0.009) (0.012) (0.025) (0.026)

Observations 356,793 356,271 356,792 356,270
R-squared 0.590 0.647 0.742 0.778
Firm FE ✓ ✓ ✓ ✓
Year FE ✓ ✓
Industry FE ✓ ✓
City FE ✓ ✓
Industry-Year FE ✓ ✓
City-Year FE ✓ ✓

Notes: Standard errors in parentheses. * significant at 10%, ** significant

at 5% , *** significant at 1%.
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Table B.20. Policy effect on pollution intensity

SO2int (1) (2) (3) (4)

Export tariff 1.917*** 1.351***
(0.369) (0.321)

Pollution tax -0.134*** -0.163***
(0.020) (0.018)

Observations 364 364 364 364
Adj. R-squared 0.067 0.312 0.193 0.175
Year FE ✓ ✓

Notes: Standard errors in parentheses. * significant at 10%, ** signif-

icant at 5% , *** significant at 1%.

C Trade liberalization and environmental regulation

I run joint regressions of the WTO accession and the 11th Five-Year Plan following equation
(C.1). The results are shown in Table C.1. Reassuringly, the coefficients are very close to the
results of the WTO in Table 3 and the 11th Five-Year Plan in Table 4 separately.

logSO2intit = β0+β1 tariffs×WTOt++β2 logTargetp×FY Pt+log salesit+γt+ηs+δp+µi+ϵit (C.1)

Table C.1. Impact of trade liberalization and environmental regulation on SO2 pollution intensity

logSO2int (1) (2) (3) (4) (5) (6)

tariffsavg.input ×WTO -0.017*** -0.019***
(0.004) (0.004)

tariffwavg.input ×WTO -0.014*** -0.016***
(0.003) (0.003)

tariffsavg.output ×WTO -0.004*** -0.000
(0.001) (0.001)

tariffwavg.output ×WTO -0.002** 0.000
(0.001) (0.001)

logTarget× FY P -0.092*** -0.093*** -0.101*** -0.101*** -0.097*** -0.098***
(0.024) (0.024) (0.024) (0.024) (0.023) (0.023)

log sales -0.672*** -0.673*** -0.671*** -0.671*** -0.671*** -0.671***
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Observations 560,894 560,894 518,901 518,901 518,901 518,901
Adj. R-squared 0.832 0.832 0.835 0.835 0.835 0.835
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓ ✓ ✓ ✓
Province FE ✓ ✓ ✓ ✓ ✓ ✓
Firm FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: Standard errors in parentheses, clustered at the industry-year and province-year levels. “savg” and

“wavg” represent simple average and weighted average tariffs respectively. * significant at 10%, ** significant

at 5% , *** significant at 1%.

D Alternative firm-level decomposition

I decompose the firm-level pollution intensity following Martin (2012) to investigate the contri-
bution across and within industries and firms. One can write the aggregate pollution intensity
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z as:

z =
∑
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xis
x
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∑
s

∑
i∈Is

xs
x

xis
xs
zis =

∑
s

ssΦs

=
1

N

∑
s

z̄s︸ ︷︷ ︸
within

+
1

N

∑
s

∑
i∈Is

(sis − s̄s)(zis − z̄s)︸ ︷︷ ︸
across firms

+
∑
s

(ss − s̄)

(
Φs −

1

N

∑
s

Φs

)
︸ ︷︷ ︸

across industries

(D.1)

where firm i’s share of output within industry s is sis =
xis
xs

, industry s’s share within the

economy is ss =
xs
x
, each industry’s pollution intensity is Φs =

∑
i∈Is

xis
xs
zis, average firm share

within each industry is s̄s =
1

ns

∑
i∈Is

xis
xs

, average share of a industry within the economy is

s̄ =
1

N

∑
s

xs
x
, and average pollution intensity in each industry is z̄s =

1

ns

∑
i∈Is

zis. ns and

N represent the number of firms within industry s and the number of industries within the
economy, respectively.

The three terms on the right-hand-side of equation (D.1) represent the within-firm, across-
firms and across-industries effects. The within-firm component is the average industry mean
of pollution intensity and accounts for the contribution of average individual firm pollution
intensity. The across-firm component covers the difference in pollution intensity between each
firm and the sector mean, taking into consideration firm size. The across-industry component
consists of the difference in pollution intensity between each sector and the total industry mean,
while including sector size. The decomposition outcome is plotted in Figure D.1. The within-
firm scale effect is the highest dashed blue line which raised pollution intensity dramatically after
2000 when China entered the WTO and then declined gradually. The across-firm composition
effect represented by the dotted-dash red line decreases the pollution intensity by almost one
half, which captures reallocation of market shares towards less polluting firms. The structural
change across industries further draws down the pollution intensity by a little, as indicated
by the solid green line, consistent with the conclusion from industry-level decomposition that
industry structure does not reduce pollution much.

Figure D.1. Firm-level SO2 emission intensity decomposition
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E Proof of comparative statics

First, denote io,s(φ) =
∑

j zoj,s(φ)/
∑

j qoj,s(φ) as the pollution intensity of a firm with pro-
ductivity φ, which is pollution emitted per unit of output. Io,s = Zo,sPo,s/Ro,s is the pollution
intensity of a sector, where Po,s is the sectoral price index, Zo,s is total emissions, and Ro,s is
total revenue. Next, let Ao,s = Eo,sP

σs−1
o,s be market size, where Eo,s is expenditure. Finally,

λod,s is a measure of openness to trade, which is the share of country d’s expenditure in sector
s that is purchased from country o.

Combining equations (20) and (21) gives :

zod,s
qod,s

= (1− aod,s)
(1−αs)/αs (E.1)

Then io,s(φ) =

∑
j zoj,s(φ)∑
j qoj,s(φ)

=

∑
j(1− aod,s)

(1−αs)/αsqoj,s(φ)∑
j qoj,s(φ)

= (1−aod,s)(1−αs)/αs =

(
wo

φto,s

αs

1− αs

)1−αs

where the last equality is obtained by substituting 1− aod,s with equation (23).
The derivative of pollution intensity with respect to productivity is:

∂io,s(φ)

∂φ
= (αs − 1)

io,s(φ)

φ
< 0

given αs ∈ (0, 1) and φ, io,s(φ) > 0.

Sector-level pollution intensity:

Io,s =
Zo,sPo,s

Ro,s
=

∑
j zoj,s(φ)∑
j roj,s(φ)

Po,s =
αs

to,s

σs − 1

σs
Po,s

where the last equality follows by using intensity (E.1), revenue rod,s(φ) = pod,s(φ)qod,s(φ),
demand (16), and price (24).

The derivatives are:

∂Io,s
∂to,s

=
Io,s
to,s

(αsλoo,s − 1) < 0,
∂Io,s
∂bo,s

= −(1− αs)
Io,s
bo,s

λoo,s < 0,
∂Io,s
∂τdo,s

=
Io,s
τdo,s

λdo,s > 0.

given αs ∈ (0, 1), λoo,s ∈ [0, 1], assuming θs > (σs − 1)(1− αs).
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